Ultrafast reversible self-assembly of living tangled matter

被引:28
|
作者
Patil, Vishal P. [1 ]
Tuazon, Harry [2 ]
Kaufman, Emily [2 ]
Chakrabortty, Tuhin [2 ]
Qin, David [3 ]
Dunkel, Jorn [4 ]
Bhamla, M. Saad [2 ]
机构
[1] Stanford Univ, Dept Bioengn, 475 Via Ortega, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30318 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[4] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
MECHANICS;
D O I
10.1126/science.ade7759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tangled active filaments are ubiquitous in nature, from chromosomal DNA and cilia carpets to root networks and worm collectives. How activity and elasticity facilitate collective topological transformations in living tangled matter is not well understood. We studied California blackworms (Lumbriculus variegatus), which slowly form tangles in minutes but can untangle in milliseconds. Combining ultrasound imaging, theoretical analysis, and simulations, we developed and validated a mechanistic model that explains how the kinematics of individual active filaments determines their emergent collective topological dynamics. The model reveals that resonantly alternating helical waves enable both tangle formation and ultrafast untangling. By identifying generic dynamical principles of topological self-transformations, our results can provide guidance for designing classes of topologically tunable active materials.
引用
收藏
页码:392 / +
页数:7
相关论文
共 50 条
  • [31] Light-controlled reversible self-assembly of nanorod suprastructures
    Guo, Jie
    Zhang, Heng-Yi
    Zhou, Yan
    Liu, Yu
    CHEMICAL COMMUNICATIONS, 2017, 53 (45) : 6089 - 6092
  • [32] Controlled Self-Assembly of Soft-Matter Quasicrystals
    Barkan, K.
    Engel, M.
    Diamant, H.
    Lifshitz, R.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C889 - C889
  • [33] Biocatalytic Self-Assembly Using Reversible and Irreversible Enzyme Immobilization
    Conte, M. P.
    Lau, K. H. A.
    Ulijn, R. V.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3266 - 3271
  • [34] Thermally Reversible Self-Assembly of Nanoparticles via Polymer Crystallization
    Kinnear, Calum
    Balog, Sandor
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (23) : 2012 - 2017
  • [35] Self-assembly in soft matter with multiple length scales
    Scacchi, Alberto
    Nikkhah, Sousa Javan
    Sammalkorpi, Maria
    Ala-Nissila, Tapio
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [36] Self-assembly of soft-matter quasicrystals and their approximants
    Iacovella, Christopher R.
    Keys, Aaron S.
    Glotzer, Sharon C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (52) : 20935 - 20940
  • [37] Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly
    Ouberai, Myriam M.
    Dos Santos, Ana L. Gomes
    Kinna, Sonja
    Madalli, Shimona
    Hornigold, David C.
    Baker, David
    Naylor, Jacqueline
    Sheldrake, Laura
    Corkill, Dominic J.
    Hood, John
    Vicini, Paolo
    Uddin, Shahid
    Bishop, Steven
    Varley, Paul G.
    Welland, Mark E.
    NATURE COMMUNICATIONS, 2017, 8
  • [38] Reversible self-assembly of peptide and peptide-DNA superstructures
    Stupp, Samuel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [39] Reversible self-assembly of gold nanoparticles in response to external stimuli
    Iqbal, M. Zubair
    Ali, Israt
    Khan, Waheed S.
    Kong, Xiangdong
    Dempsey, Eithne
    MATERIALS & DESIGN, 2021, 205
  • [40] Optically reversible self-assembly of dendron-biomolecule complexes
    Kostiainen, Mauri A.
    Linder, Markus B.
    Kasyutich, Oksana
    Cornelissen, Jeroen J. L. M.
    Nolte, Roeland J. M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239