Edge-Labeled and Node-Aggregated Graph Neural Networks for Few-Shot Relation Classification

被引:3
|
作者
Wang, Jiayi [1 ]
Yang, Lina [1 ]
Li, Xichun [2 ]
Shen-Pei Wang, Patrick [3 ]
Meng, Zuqiang [1 ]
机构
[1] Guangxi Univ, Nanning 530004, Guangxi, Peoples R China
[2] Guangxi Normal Univ Nationalities, Chongzuo 532200, Guangxi, Peoples R China
[3] Northeastern Univ, Khoury Coll Comp Sci, Dept Comp & Informat Sci, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Relation classification; graph neural networks; few-shot learning; semi-supervised learning;
D O I
10.1142/S0218001423500106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relation classification as a core technique for building knowledge graphs becomes a critical task in natural language processing. The fact that humans can learn by summarizing and generalizing limited knowledge motivates scholars to explore few-shot learning. Graph neural networks provide a method to measure the distance between nodes, which improves the model effect in the problem of few-shot relation classification. However, graph neural network methods focus only on node information and ignore edge information which implies inter-class and intra-class relations. This paper proposes edge-labeled and node-aggregated graph neural networks (ENGNNs) for few-shot relation classification: edge labels are encoded and used for node information aggregation. In addition, a process of semi-supervised learning is designed to discover a better solution for one-shot learning. Compared with previous methods, experimental results show that the proposed ENGNN model improves the performance of the graph neural network on the FewRel dataset.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Heterogeneous graph neural networks for noisy few-shot relation classification
    Xie, Yuxiang
    Xu, Hua
    Li, Jiaoe
    Yang, Congcong
    Gao, Kai
    Knowledge-Based Systems, 2021, 194
  • [2] Heterogeneous graph neural networks for noisy few-shot relation classification
    Xie, Yuxiang
    Xu, Hua
    Li, Jiaoe
    Yang, Congcong
    Gao, Kai
    KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [3] Federated Collaborative Graph Neural Networks for Few-shot Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Wen, Chao
    Qin, A. K.
    Gong, Maoguo
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (06) : 1077 - 1091
  • [4] Few-Shot Audio Classification with Attentional Graph Neural Networks
    Zhang, Shilei
    Qin, Yong
    Sun, Kewei
    Lin, Yonghua
    INTERSPEECH 2019, 2019, : 3649 - 3653
  • [5] Few-Shot Node Classification Method of Graph Adaptive Prototypical Networks
    Guo, Ruize
    Wei, Wei
    Cui, Junbiao
    Feng, Kai
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (08): : 743 - 753
  • [6] Few-shot Node Classification on Attributed Networks with Graph Meta-learning
    Liu, Yonghao
    Li, Mengyu
    Li, Ximing
    Giunchiglia, Fausto
    Feng, Xiaoyue
    Guan, Renchu
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 471 - 481
  • [7] Fused Node-Level Residual Structure Edge Graph Neural Network for Few-Shot Image Classification
    Xu, Yaoqun
    Wang, Yuemao
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [8] Supervised Graph Contrastive Learning for Few-Shot Node Classification
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 394 - 411
  • [9] Generalized Few-Shot Node Classification With Graph Knowledge Distillation
    Wang, Jialong
    Zhou, Mengting
    Zhang, Shilong
    Gong, Zhiguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [10] Hierarchical Graph Neural Networks for Few-Shot Learning
    Chen, Cen
    Li, Kenli
    Wei, Wei
    Zhou, Joey Tianyi
    Zeng, Zeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 240 - 252