Deep Successive Convex Approximation for Image Super-Resolution

被引:2
|
作者
Li, Xiaohui [1 ]
Wang, Jinpeng [1 ]
Liu, Xinbo [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect & Informat Engn, Jinzhou 121001, Peoples R China
[2] Woosong Univ, SolBridge Int Sch Business, Daejeon 34613, South Korea
关键词
image super-resolution; successive convex approximation; deep learning; LOW-RESOLUTION IMAGES; NETWORK;
D O I
10.3390/math11030651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Image super-resolution (SR), as one of the classic image processing issues, has attracted increasing attention from researchers. As a highly ill-conditioned, non-convex optimization issue, it is difficult for image SR to restore a high-resolution (HR) image from a given low-resolution (LR) instance. Recent researchers have tended to regard image SR as a regression task and to design an end-to-end convolutional neural network (CNN) to predict the pixels directly, which lacks inherent theoretical analysis and limits the effectiveness of the restoration. In this paper, we analyze image SR from an optimization perspective and develop a deep successive convex approximation network (SCANet) for generating HR images. Specifically, we divide non-convex optimization into several convex LASSO sub-problems and use CNN to adaptively learn the parameters. To boost network representation, we use residual feature aggregation (RFA) blocks and devise a spatial and channel attention (SACA) mechanism to improve the restoration capacity. The experimental results show that the proposed SCANet can restore HR images more effectively than other works. Specifically, SCANet achieves higher PSNR/SSIM results and generates more satisfying textures.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Deep Residual Network for Single Image Super-Resolution
    Wang, Haimin
    Liao, Kai
    Yan, Bin
    Ye, Run
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 66 - 70
  • [42] Deep Intra Fusion for Hyperspectral Image Super-Resolution
    School of Computer Science and Engineering, Xi'an University of Technology, Xi'an
    710048, China
    不详
    710071, China
    Dig Int Geosci Remote Sens Symp (IGARSS), 2020, (2663-2666):
  • [43] Image Super-Resolution Using Deep RCSA Network
    Cao, Yuheng
    Zhou, Mengjie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 695 - 706
  • [44] Superpixel Driven Unsupervised Deep Image Super-Resolution
    Jun Yang
    Chao Zhang
    Li Xu
    Bing Luo
    Neural Processing Letters, 2023, 55 : 7887 - 7905
  • [45] Deep Bilateral Learning for Stereo Image Super-Resolution
    Xu, Qingyu
    Wang, Longguang
    Wang, Yingqian
    Sheng, Weidong
    Deng, Xinpu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 613 - 617
  • [46] LASSO Approximation and Application to Image Super-Resolution with CUDA Acceleration
    Tan, Hanlin
    Xiao, Huaxin
    Liu, Yu
    Zhang, Maojun
    Wang, Bin
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 483 - 488
  • [47] Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task
    Li, Ke
    Dai, Dengxin
    van Gool, Luc
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 4039 - 4048
  • [48] From Deep Image Decomposition to Single Depth Image Super-Resolution
    Zhao, Lijun
    Wang, Ke
    Zhang, Jinjing
    Bai, Huihui
    Zhao, Yao
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 23 - 34
  • [49] Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution
    Li, Jiaxin
    Zheng, Ke
    Gao, Lianru
    Han, Zhu
    Li, Zhi
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [50] A Convex Approach for Variational Super-Resolution
    Unger, Markus
    Pock, Thomas
    Werlberger, Manuel
    Bischof, Horst
    PATTERN RECOGNITION, 2010, 6376 : 313 - 322