Deep Successive Convex Approximation for Image Super-Resolution

被引:2
|
作者
Li, Xiaohui [1 ]
Wang, Jinpeng [1 ]
Liu, Xinbo [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect & Informat Engn, Jinzhou 121001, Peoples R China
[2] Woosong Univ, SolBridge Int Sch Business, Daejeon 34613, South Korea
关键词
image super-resolution; successive convex approximation; deep learning; LOW-RESOLUTION IMAGES; NETWORK;
D O I
10.3390/math11030651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Image super-resolution (SR), as one of the classic image processing issues, has attracted increasing attention from researchers. As a highly ill-conditioned, non-convex optimization issue, it is difficult for image SR to restore a high-resolution (HR) image from a given low-resolution (LR) instance. Recent researchers have tended to regard image SR as a regression task and to design an end-to-end convolutional neural network (CNN) to predict the pixels directly, which lacks inherent theoretical analysis and limits the effectiveness of the restoration. In this paper, we analyze image SR from an optimization perspective and develop a deep successive convex approximation network (SCANet) for generating HR images. Specifically, we divide non-convex optimization into several convex LASSO sub-problems and use CNN to adaptively learn the parameters. To boost network representation, we use residual feature aggregation (RFA) blocks and devise a spatial and channel attention (SACA) mechanism to improve the restoration capacity. The experimental results show that the proposed SCANet can restore HR images more effectively than other works. Specifically, SCANet achieves higher PSNR/SSIM results and generates more satisfying textures.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Image Super-Resolution with Deep Dictionary
    Maeda, Shunta
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 464 - 480
  • [2] Enhanced Deep Image Super-Resolution
    Singh, Shrey
    Afreen, Nishat
    Kumar, Sanjay
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1207 - 1211
  • [3] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [4] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [5] CONVEX DICTIONARY LEARNING FOR SINGLE IMAGE SUPER-RESOLUTION
    Ding, Pak Lun Kevin
    Li, Baoxin
    Chang, Kan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4058 - 4062
  • [6] CODE-IF: A Convex/Deep Image Fusion Algorithm for Efficient Hyperspectral Super-Resolution
    Lin, Chia-Hsiang
    Hsieh, Cheng-Ying
    Lin, Jhao-Ting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [7] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [8] A DEEP DICTIONARY MODEL FOR IMAGE SUPER-RESOLUTION
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6777 - 6781
  • [9] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [10] Deep Network Cascade for Image Super-resolution
    Cui, Zhen
    Chang, Hong
    Shan, Shiguang
    Zhong, Bineng
    Chen, Xilin
    COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 49 - 64