MMKDGAT: Multi-modal Knowledge graph-aware Deep Graph Attention Network for remote sensing image recommendation

被引:6
|
作者
Wang, Fei [1 ,2 ,3 ]
Zhu, Xianzhang [2 ,3 ]
Cheng, Xin [1 ]
Zhang, Yongjun [1 ]
Li, Yansheng [1 ,4 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[2] Changjiang Spatial Informat Technol Engn Co Ltd, Wuhan, Peoples R China
[3] Water Resources Informat Percept & Big Data Engn R, Wuhan, Peoples R China
[4] Hubei Luojia Lab, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing image recommendation; Multi-modal knowledge graph; Deep graph convolutional network; Collaborative filtering;
D O I
10.1016/j.eswa.2023.121278
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the era of remote sensing (RS) big data, in order to alleviate the time cost of acquiring RS images, recommending RS images that meet users' individual needs continues to be an urgent technology. However, the technology accomplished to date has two main problems: (1) they rely on the users' queries and thus lack initiative and cannot tap the users' potential interests and (2) they restrict the users' preferences to temporal and/or spatial information while ignoring other attributes and are not compatible with visual information. In an effort to fully explore the features of RS images and thereby achieve accurate active recommendations, in this paper we propose a new Multi-modal Knowledge graph-aware Deep Graph Attention Network (MMKDGAT) which we built upon graph convolutional networks. Specifically, we first constructed a multi-modal knowledge graph (MMKG) for RS images to integrate their various attributes as well as visual information, and then we conduct deep relational attention-based information aggregation to enrich the node representations with multi-modal information and higher-order collaborative signals. Our extensive experiments on two simulated RS image recommendation datasets demonstrated that our MMKDGAT achieved noticeable improvement over several state-of-the-art methods in so far as active recommendation accuracy and cold-start recommendation.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Contextualized Graph Attention Network for Recommendation With Item Knowledge Graph
    Liu, Yong
    Yang, Susen
    Xu, Yonghui
    Miao, Chunyan
    Wu, Min
    Zhang, Juyong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 181 - 195
  • [22] Attention-Aware Sobel Graph Convolutional Network for Remote Sensing Image Change Detection
    Wang, Lei
    You, Zhi-Hui
    Lu, Wei
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [23] An Enhanced Multi-Modal Recommendation Based on Alternate Training With Knowledge Graph Representation
    Wang, Yuequn
    Dong, Liyan
    Zhang, Hao
    Ma, Xintao
    Li, Yongli
    Sun, Minghui
    IEEE ACCESS, 2020, 8 : 213012 - 213026
  • [24] Integrated Heterogeneous Graph Attention Network for Incomplete Multi-modal Clustering
    Wang, Yu
    Yao, Xinjie
    Zhu, Pengfei
    Li, Weihao
    Cao, Meng
    Hu, Qinghua
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (09) : 3847 - 3866
  • [25] SDGANets: a semantically enhanced dual graph-aware network for affine and registration of remote sensing images
    Xie Zhuli
    Wan Gang
    Liu Jia
    Bu Dongdong
    Complex & Intelligent Systems, 2025, 11 (4)
  • [26] Bidirectional Knowledge-Aware Attention Network over Knowledge Graph for Explainable Recommendation
    Lyu, Yanxia
    Su, Guorui
    Wang, Jianghan
    Xing, Ye
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 170 - 174
  • [27] Multi-modal Graph and Sequence Fusion Learning for Recommendation
    Wang, Zejun
    Wu, Xinglong
    Yang, Hongwei
    He, Hui
    Tai, Yu
    Zhang, Weizhe
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 357 - 369
  • [28] Triplet-aware graph neural networks for factorized multi-modal knowledge graph entity alignment
    Li, Qian
    Li, Jianxin
    Wu, Jia
    Peng, Xutan
    Ji, Cheng
    Peng, Hao
    Wang, Lihong
    Yu, Philip S.
    NEURAL NETWORKS, 2024, 179
  • [29] Richpedia: A Comprehensive Multi-modal Knowledge Graph
    Wang, Meng
    Qi, Guilin
    Wang, Haofen
    Zheng, Qiushuo
    SEMANTIC TECHNOLOGY, JIST 2019: PROCEEDINGS, 2020, 12032 : 130 - 145
  • [30] What Is a Multi-Modal Knowledge Graph: A Survey
    Peng, Jinghui
    Hu, Xinyu
    Huang, Wenbo
    Yang, Jian
    BIG DATA RESEARCH, 2023, 32