Evaluation of the Performance of Low-Cement Strain-Hardening Cementitious Composites Containing Desert Sand and Ground Scoria Rocks

被引:0
|
作者
Fares, Galal [1 ]
Khan, Mohammad Iqbal [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Civil Engn, POB 800, Riyadh 11421, Saudi Arabia
关键词
desert sands; strain-hardening properties; PVA microfibers; BSE microstructure-based technique of analysis; FLY-ASH; MECHANICAL-PROPERTIES; BEHAVIOR; STRENGTH; SHCC;
D O I
10.3390/ma16175896
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fine aggregates are the main ingredients that control the success of the preparation and performance of strain-hardening cementitious composites (SHCCs). Worldwide deserts can be used as eternal sources of fine aggregates for the preparation of SHCCs. Arabian Peninsula desert sand spreads over the largest desert area in the world, covering an area of 2,300,000 km2 among the Arabian Gulf countries. White and dune desert sands were procured for use in this study. The morphological structure is important in selecting the appropriate sand for use in the preparation of SHCCs. The utilization of microfibers such as polyvinyl alcohol (PVA) has become common practice for the preparation of SHCCs. The presence of desert sand is proven to enhance the dispersibility of PVA due to its spherical structure, which alleviates the friction among the ingredients forming SHCCs. Two mechanisms are defined under the tensile force at the interface of microfibers and natural sand, namely, a strong frictional force leading to rupture or a weaker force causing pullout. The synergy between fibers and fine aggregate grains depends on their surface characteristics, which can be modified using different types of mineral admixtures. In this research, the alignment of microfibers as an indication of the quality of dispersion could be evaluated using a proposed approach based on an advanced technique of microstructural analysis. PVA dispersion and its relation to strain-hardening properties are visually correlated to the surface interaction of the mineral admixture and dune sand. The microdurability and cost effectiveness of SHCCs could be assessed using the proposed approach, as depicted by the results obtained in this research work.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Study on the impact performance of RC fences strengthened with high strength strain-hardening cementitious composites
    Wu, Chao
    Mahmoud, Mohamed M.
    Hou, Chuan-Chuan
    Topa, Ameen
    STRUCTURES, 2022, 41 : 349 - 364
  • [22] TENSILE STRAIN-HARDENING AND MULTIPLE CRACKING IN HIGH-PERFORMANCE CEMENT-BASED COMPOSITES CONTAINING DISCONTINUOUS FIBERS
    TJIPTOBROTO, P
    HANSEN, W
    ACI MATERIALS JOURNAL, 1993, 90 (01) : 16 - 25
  • [23] Development of ecological strain-hardening cementitious composites incorporating high-volume ground-glass pozzolans
    Hisseine, Ousmane A.
    Tagnit-Hamou, Arezki
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 238 (238)
  • [24] Hydration mechanism and mechanical properties of a developed low-carbon and lightweight strain-hardening cementitious composites
    Chen, Wenhua
    Wang, Qiang
    Huang, Zhiyi
    Du, Hongjian
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (05) : 661 - 677
  • [25] Potential of sodium sulfate solution for promoting the crack-healing performance for strain-hardening cementitious composites
    Hung, Chung-Chan
    Hung, Hsuan-Hui
    CEMENT & CONCRETE COMPOSITES, 2020, 106
  • [26] Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics
    Huang, Bo-Tao
    Wu, Jia-Qi
    Yu, Jing
    Dai, Jian-Guo
    Leung, Christopher K. Y.
    Li, Victor C.
    CEMENT AND CONCRETE RESEARCH, 2021, 140
  • [27] Improved mechanical performance: Shear behaviour of strain-hardening cement-based composites (SHCC)
    van Zijl, Gideon P. A. G.
    CEMENT AND CONCRETE RESEARCH, 2007, 37 (08) : 1241 - 1247
  • [28] Tensile properties of strain-hardening cementitious composites containing polyvinyl-alcohol fibers hybridized with polypropylene fibers
    Pakravan, H. R.
    Jamshidi, M.
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2018, 25 (01) : 51 - 59
  • [29] Influence of Aggregate Gradation on Mechanics Performance of Strain-hardening Cement-based Composites (SHCC)
    Tian Li
    Chen Jingru
    Zhao Tiejun
    Ding Zhu
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 207 - +
  • [30] Electrical and mechanical properties of high-strength strain-hardening cementitious composites containing silvered polyethylene fibers
    Oh, Taekgeun
    Kim, Min-Jae
    Kim, Soonho
    Lee, Seung Kyun
    Kang, Min-Chang
    Yoo, Doo-Yeol
    JOURNAL OF BUILDING ENGINEERING, 2022, 46