CMOS Compatible Low Power Consumption Ferroelectric Synapse for Neuromorphic Computing

被引:11
|
作者
Li, Zhenhai [1 ,2 ,3 ]
Meng, Jialin [1 ,2 ,3 ]
Yu, Jiajie [1 ,2 ,3 ]
Liu, Yongkai [1 ,2 ,3 ]
Wang, Tianyu [1 ,2 ,3 ]
Liu, Pei [1 ,2 ,3 ]
Chen, Shiyou [1 ,2 ,3 ]
Zhu, Hao [1 ,2 ,3 ]
Sun, Qingqing [1 ,2 ,3 ]
Zhang, David Wei [1 ,2 ,3 ]
Chen, Lin [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[2] Zhangjiang Fudan Int Innovat Ctr, Shanghai 201203, Peoples R China
[3] Jiashan Fudan Inst, Jiaxing 314100, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
HfO2-based FTJ; first-principles calculations; synaptic devices; neuromorphic computing; MEMRISTOR;
D O I
10.1109/LED.2023.3234690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of bioelectronics, brain-inspired artificial synapses become more and more important. To simulate artificial synapse, a HfAlO ferroelectric tunnel junction (FTJ) was fabricated, which can simulate short-term synaptic plasticity for neuromorphic computing. The devices realize the synaptic function with low power consumption of about 7.15 aJ per synaptic event. Moreover, to explore the effect of oxygen defects on ferroelectric properties of HfAlO-based device, the first-principle analysis was further carried out. These results pave the way of hafnium-based ferroelectric synaptic devices.
引用
下载
收藏
页码:532 / 535
页数:4
相关论文
共 50 条
  • [1] Multisensory Ferroelectric Semiconductor Synapse for Neuromorphic Computing
    Zeng, Jinhua
    Feng, Guangdi
    Wu, Guangjian
    Liu, Jianquan
    Zhao, Qianru
    Wang, Huiting
    Wu, Shuaiqin
    Wang, Xudong
    Chen, Yan
    Han, Suting
    Tian, Bobo
    Duan, Chungang
    Lin, Tie
    Ge, Jun
    Shen, Hong
    Meng, Xiangjian
    Chu, Junhao
    Wang, Jianlu
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [2] Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing
    Luo, Jie
    Tian, Guo
    Zhang, Ding-Guo
    Zhang, Xing-Chen
    Lu, Zhen-Ni
    Zhang, Zhong-Da
    Cai, Jia-Wei
    Zhong, Ya-Nan
    Xu, Jian-Long
    Gao, Xu
    Wang, Sui-Dong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (41) : 48452 - 48461
  • [3] Ferroelectric artificial synapse for neuromorphic computing and flexible applications
    Li, Qing-Xuan
    Liu, Yi-Lun
    Cao, Yuan-Yuan
    Wang, Tian-Yu
    Zhu, Hao
    Ji, Li
    Liu, Wen-Jun
    Sun, Qing-Qing
    Zhang, David Wei
    Chen, Lin
    FUNDAMENTAL RESEARCH, 2023, 3 (06): : 960 - 966
  • [4] CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review
    Yixin Zhu
    Huiwu Mao
    Ying Zhu
    Xiangjing Wang
    Chuanyu Fu
    Shuo Ke
    Changjin Wan
    Qing Wan
    International Journal of Extreme Manufacturing, 2023, 5 (04) : 296 - 317
  • [5] CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review
    Zhu, Yixin
    Mao, Huiwu
    Zhu, Ying
    Wang, Xiangjing
    Fu, Chuanyu
    Ke, Shuo
    Wan, Changjin
    Wan, Qing
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (04)
  • [6] Back-End CMOS Compatible and Flexible Ferroelectric Memories for Neuromorphic Computing and Adaptive Sensing
    Majumdar, Sayani
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (04)
  • [7] Ferroelectric synaptic devices based on CMOS-compatible HfAlOx for neuromorphic and reservoir computing applications
    Kim, Dahye
    Kim, Jihyung
    Yun, Seokyeon
    Lee, Jungwoo
    Seo, Euncho
    Kim, Sungjun
    NANOSCALE, 2023, 15 (18) : 8366 - 8376
  • [8] CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing
    Facai Wu
    Chien-Hung Chou
    Tseung-Yuen Tseng
    Nanoscale Research Letters, 17
  • [9] CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing
    Wu, Facai
    Chou, Chien-Hung
    Tseng, Tseung-Yuen
    NANOSCALE RESEARCH LETTERS, 2022, 17 (01):
  • [10] Ferroelectric polymer-based artificial synapse for neuromorphic computing
    Kim, Sungjun
    Heo, Keun
    Lee, Sunghun
    Seo, Seunghwan
    Kim, Hyeongjun
    Cho, Jeongick
    Lee, Hyunkyu
    Lee, Kyeong-Bae
    Park, Jin-Hong
    NANOSCALE HORIZONS, 2021, 6 (02) : 139 - 147