3-D Protoacoustic Imaging Through a Planar Ultrasound Array: A Simulation Workflow

被引:0
|
作者
Samant, Pratik [1 ,2 ,3 ]
Trevisi, Luis M. [4 ]
Chen, Yong [5 ]
Zwart, Townsend [6 ]
Xiang, Liangzhong [7 ,8 ,9 ]
机构
[1] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73071 USA
[2] Univ Oxford, Dept Oncol, Oxford OX1 2JD, England
[3] Oxford Univ Hosp NHS Fdn Trust, Oxford OX3 7LE, Oxon, England
[4] Univ Oklahoma, Dept Chem Biol & Mat Engn, Norman, OK 73071 USA
[5] Univ Oklahoma, Dept Radiat Oncol, Hlth Sci Ctr, Oklahoma City, OK 73104 USA
[6] Mev Med Syst, Adv Dev, Littleton, MA 01460 USA
[7] Univ Calif Irvine, Dept Biomed Engn & Radiol, Dept Radiol Sci, Irvine, CA 92697 USA
[8] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92697 USA
[9] Univ Calif Irvine, Med Clin, Irvine, CA 92697 USA
关键词
Analytical; analytical dosimetry; image-guided therapy; image-guided therapy devices; radiation therapy; PROTON-BEAM; PLATFORM;
D O I
10.1109/TRPMS.2022.3177236
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Bragg peak range uncertainties are a persistent constraint in proton therapy. Pulsed proton beams generate protoacoustic emissions proportional to absorbed proton energy, thereby encoding dosimetry information in a detectable acoustic wave. Here, we seek to derive and model 3-D protoacoustic imaging with an ultrasound array and examine the frequency characteristics of protoacoustic emissions. A formalism is presented through which protoacoustic signals can be characterized considering transducer bandwidth as well as pulse duration of the incident beam. We have also collected an experimental proton beam intensity signal from a Mevion S250 clinical machine to analyze our formalism. We also show that proton-acoustic image reconstruction is possible even when the noise amplitude is larger than the signal amplitude on individual transducers. We find that a 4-mu s Gaussian proton pulse can generate a signal in the range of megahertz as long as the spatial heating function has sufficiently high temperature gradients.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 50 条
  • [21] A simple 2-D ultrasound array and front-end electronics for 3-D volumetric imaging
    Zhi, Y
    Guo, PY
    Zhu, Q
    PROCEEDINGS OF THE IEEE 25TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 1999, : 85 - 86
  • [22] Switched Array Concepts for 3-D Radar Imaging
    Nelander, Anders
    2010 IEEE RADAR CONFERENCE, 2010, : 1019 - 1024
  • [23] A linear-array freehand 3-D endoscopic ultrasound
    Sumiyama, K
    Suzuki, N
    Tajiri, H
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (07): : 1001 - 1006
  • [24] Ultrasound Planar Array Imaging Metric Analysis
    Lou, Cuijuan
    Xiao, Feng
    Song, Junjie
    Ding, Mingyue
    Yuchi, Ming
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (07) : 2386 - 2396
  • [25] ULTRASOUND IMAGING IN 3-D - IMAGE-PROCESSING
    HIGGINS, M
    COMPUTER GRAPHICS WORLD, 1983, 6 (03) : 89 - 89
  • [26] 3-D imaging of residual limbs using ultrasound
    He, P
    Xue, KF
    Murka, P
    JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 1997, 34 (03): : 269 - 278
  • [27] Separable Beamforming For 3-D Medical Ultrasound Imaging
    Yang, Ming
    Sampson, Richard
    Wei, Siyuan
    Wenisch, Thomas F.
    Chakrabarti, Chaitali
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) : 279 - 290
  • [28] Two dimensional Arrays for 3-D ultrasound Imaging
    Smith, SW
    Lee, W
    Light, ED
    Yen, JT
    Wolf, P
    Idriss, S
    2002 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2002, : 1545 - 1553
  • [29] FREEHAND 3-D ULTRASOUND IMAGING: A SYSTEMATIC REVIEW
    Mozaffari, Mohammad Hamed
    Lee, Won-Sook
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2017, 43 (10): : 2099 - 2124
  • [30] Linear Tracking for 3-D Medical Ultrasound Imaging
    Huang, Qing-Hua
    Yang, Zhao
    Hu, Wei
    Jin, Lian-Wen
    Wei, Gang
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1747 - 1754