Least-energy nodal solutions of nonlinear equations with fractional Orlicz-Sobolev spaces

被引:2
|
作者
Bahrouni, Anouar [1 ]
Missaoui, Hlel [1 ]
Ounaies, Hichem [1 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
关键词
Nodal solutions; Fractional Orlicz-Sobolev spaces; Nehari manifold method; least energy; SIGN-CHANGING SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.3233/ASY-221770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of least-energy nodal (sign-changing) weak solutions for a class of fractional Orlicz equations given by (-Delta(g))(alpha)u + g(u) = K(x)f (u), in R-N, where N >= 3, (-Delta(g))(alpha) is the fractional Orlicz g-Laplace operator, while f is an element of C-1( R) and K is a positive and continuous function. Under a suitable conditions on f and K, we prove a compact embeddings result for weighted fractional OrliczSobolev spaces. Next, by a minimization argument on Nehari manifold and a quantitative deformation lemma, we show the existence of at least one nodal (sign-changing) weak solution.
引用
收藏
页码:145 / 183
页数:39
相关论文
共 50 条
  • [21] On a class of nonvariational problems in fractional Orlicz-Sobolev spaces
    Bahrouni, Anouar
    Bahrouni, Sabri
    Xiang, Mingqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [22] Multiplicity of solutions for nonlocal parametric elliptic systems in fractional Orlicz-Sobolev spaces
    Chadli, Lalla Saadia
    El-Houari, Hamza
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 1131 - 1164
  • [23] ON THE FRACTIONAL ELLIPTIC PROBLEMS WITH DIFFERENCE IN THE ORLICZ-SOBOLEV SPACES
    Jung, Tacksun
    Choi, Q-Heung
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (5-6) : 385 - 406
  • [24] Multivalued Elliptic Inclusion in Fractional Orlicz-Sobolev Spaces
    El-Houari, H.
    Hajar, S.
    Moussa, H.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (04)
  • [25] MULTIPLE SOLUTIONS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS ON ORLICZ-SOBOLEV SPACES
    Dinca, George
    Matei, Pavel
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (9-10) : 891 - 916
  • [26] Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 305 - 318
  • [27] L∞-bounds for elliptic equations on Orlicz-Sobolev spaces
    Fuchs, M
    Li, GB
    ARCHIV DER MATHEMATIK, 1999, 72 (04) : 293 - 297
  • [28] On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces
    Dong, Ge
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (03) : 333 - 356
  • [29] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [30] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253