The field of moduli of varieties with a structure

被引:3
|
作者
Bresciani, Giulio [1 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
来源
关键词
D O I
10.1007/s40574-023-00399-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a variety with an additional structure., such as a marked point, a divisor, a polarization, a group structure and so forth, then it is possible to study whether the pair (X, xi) is defined over the field of moduli. There exists a precise definition of "algebraic structures" which covers essentially all of the obvious concrete examples. We prove several formal results about algebraic structures. There are immediate applications to the study of fields of moduli of curves and finite sets in P-2, but the results are completely general. Fix G a finite group of automorphisms of X, a G-structure is an algebraic structure with automorphism group equal to G. First, we prove that G-structures on X are in a 1 : 1 correspondence with twisted forms of X/G ---> BG. Secondlywe showthat, under some assumptions, every algebraic structure on X is equivalent to the structure given by some 0-cycle. Third, we give a cohomological criterion for checking the existence of G-structures not defined over the field of moduli. Fourth, we identify geometric conditions about the action of G on X which ensure that every G-structure is defined over the field of moduli.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条