Cobalt enhanced the drought-stress tolerance of rice (Oryza sativa L.) by mitigating the oxidative damage and enhancing yield attributes

被引:9
|
作者
Tourky, Shaimaa M. N. [1 ]
Shukry, Wafaa M. [1 ]
Houssain, Mohammad Anwar [2 ]
Siddiqui, Manzer H. [3 ]
Pessarakli, Mohammad [4 ]
Elghareeb, Eman M. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Bot Dept, POB 35516, Mansoura, Egypt
[2] Bangladesh Agr Univ, Dept Genet & Plant Breeding, Mymensingh 2202, Bangladesh
[3] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh 11451, Saudi Arabia
[4] Univ Arizona, Sch Plant Sci, Tucson, AZ USA
关键词
Oryza sativa L; Cobalt; Drought; Antioxidants; Vitamins; Yield attributes; WATER-STRESS; SALICYLIC-ACID; PHYSIOLOGICAL TRAITS; ANTIOXIDANT ACTIVITY; LIPID-PEROXIDATION; WHEAT; PHOTOSYNTHESIS; RESPONSES; GROWTH; METABOLISM;
D O I
10.1016/j.sajb.2023.05.035
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Water scarcity is one of the most important abiotic factors limiting rice growth and productivity. The application of nutrients affects various physiological and biochemical mechanisms to curtail water deficiency, but little is known about the ameliorative effects of cobalt (Co) on rice. Our study aimed to investigate the advantageous effects of soaking in Co at the optimum concentration (10 and 44.5 mM) on morpho-physiological traits and oxidative stress, during the vegetative and reproductive stages, also assessing yield attributes, in two rice varieties (Sakha 104, drought-sensitive, and Giza 178, drought-tolerant). Treatments included control (100% field capacity (FC)), moderate drought stress (75 % FC), and severe drought stress (50% FC) either alone or in combination with Co. A water deficit and oxidative stress affected Giza 178 less than Sakha 104. Co application significantly enhanced the performance of two rice varieties under drought stress by increasing plant height, biomass, water content, tillering, leaf area, pigments (chlorophyll a, carotenoids, total chlorophyll), sugars (soluble sugars, and total carbohydrates), and Co content (shoot and root). Also, Co significantly increased the performance of the antioxidant system by elevating the concentration of total phenols, flavonoids, proline, and antioxidant enzymes (catalase, peroxidase, and polyphenol oxidase), while significantly decreasing chlorophyll b, malondialdehyde, and 2,2-diphenyl-1-picryl-hydrazyl. Yield attributes such as the number of tillers, panicle parameters (number, length, and weight), 100-grain weight, harvest index, and grain nutritive value (sugars, vitamin B, and Co contents) were significantly enhanced by Co in both varieties. However, the maximum performance was observed in Giza 178.& COPY; 2023 Published by Elsevier B.V. on behalf of SAAB.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 50 条
  • [41] Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces
    Radha Beena
    Silvas Kirubakaran
    Narayanan Nithya
    Alagu Manickavelu
    Rameshwar Prasad Sah
    Puthenpeedikal Salim Abida
    Janardanan Sreekumar
    Poolakkal Muhammed Jaslam
    Rajendrakumar Rejeth
    Vijayalayam Gengamma Jayalekshmy
    Stephen Roy
    Ramakrishnan Vimala Manju
    Mariasoosai Mary Viji
    Kadambot H. M. Siddique
    BMC Plant Biology, 21
  • [42] Improving the Drought Tolerance in Rice (Oryza sativa L.) by Exogenous Application of Salicylic Acid
    Farooq, M.
    Basra, S. M. A.
    Wahid, A.
    Ahmad, N.
    Saleem, B. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2009, 195 (04) : 237 - 246
  • [43] Screening of diverse germplasms for genetic studies of drought tolerance in rice (Oryza sativa L.)
    Ashfaq, Muhammad
    Haider, Muhammad Saleem
    Ali, Amna
    Ali, Muhammad
    Hanif, Sana
    Mubashar, Urooj
    CARYOLOGIA, 2014, 67 (04) : 296 - 304
  • [44] Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)
    Martins Abreu, Fernanda Raquel
    Dedicova, Beata
    Vianello, Rosana Pereira
    Lanna, Anna Cristina
    Vieira de Oliveira, Joao Augusto
    Vieira, Ariadna Faria
    Morais, Odilon Peixoto
    Mendonca, Joao Antonio
    Brondani, Claudio
    PROTOPLASMA, 2018, 255 (06) : 1751 - 1761
  • [45] GENETIC DIVERSITY AMONG INDONESIAN RICE (Oryza Sativa L.) GENOTYPES FOR DROUGHT TOLERANCE
    Widyawan, M. H.
    Hanifa, I
    Alam, T.
    Supriyanta
    Basunanda, P.
    Wulandari, R. A.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2020, 52 (03): : 202 - 215
  • [46] Phenotypic and Genotypic Characterization of Rice (Oryza sativa L.) Genotypes for Root Morphology and Yield under Drought Stress
    Shikha, Dixit
    Kumar, Jangid Vinod
    Shashidhar, H. E.
    Swamy, Vijayakumar H. V.
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2019, 14 (09): : 53 - 63
  • [47] Mapping Consistent Rice (Oryza sativa L.) Yield QTLs under Drought Stress in Target Rainfed Environments
    Silvas J Prince
    R Beena
    S Michael Gomez
    S Senthivel
    R Chandra Babu
    Rice, 2015, 8
  • [48] Mapping Consistent Rice (Oryza sativa L.) Yield QTLs under Drought Stress in Target Rainfed Environments
    Prince, Silvas J.
    Beena, R.
    Michael Gomez, S.
    Senthivel, S.
    Babu, R. Chandra
    RICE, 2015, 8
  • [49] Biochemical, Anatomical, Genetic, and Yield Assessment of Seven Rice Genotypes (Oryza sativa L.) Subjected to Drought Stress
    Abo-Youssef, Mahmoud I.
    Elbagory, Mohssen
    Elsehely, Abdelsalam B.
    El-Gammaal, Amgad A.
    El Denary, Medhat E.
    Abd Elaty, Mohamed S.
    Talha, Ibrahim A.
    Hazman, Mohamed
    Nehela, Yasser
    Omara, Alaa El-Dein
    El-Kallawy, Wael H.
    AGRONOMY-BASEL, 2023, 13 (10):
  • [50] EFFECTS OF NAPHTHALENE ACETIC ACID ON YIELD ATTRIBUTES AND YIELD OF TWO VARIETIES OF RICE (ORYZA SATIVA L.)
    Adam, A. M. M. Golam
    Jahan, Nargis
    BANGLADESH JOURNAL OF BOTANY, 2011, 40 (01): : 97 - 100