Manhattan Nonnegative matrix factorization using the alternating direction method of multipliers

被引:0
|
作者
Cao, Chan [1 ]
Tang, Shuyu [1 ]
Zhang, Nian [2 ]
Dai, Xiangguang [1 ]
Zhang, Wei [1 ]
Feng, Yuming [1 ]
Xiong, Jiang [1 ]
Liu, Jinkui [1 ]
Thompson, Lara [3 ]
机构
[1] Chongqing Three Gorges Univ, Chongqing 404100, Peoples R China
[2] Univ Dist Columbia, Dept Elect & Comp Engn, Washington, DC 20008 USA
[3] Univ Dist Columbia, Dept Mech Engn, Biomed Engn Program, Washington, DC 20008 USA
基金
美国国家卫生研究院;
关键词
Nonnegative matrix factorization; L-1-norm; nonconvex nonsmooth; PARTS;
D O I
10.1109/ICACI58115.2023.10146156
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization (NMF) was a classic model for dimensional reduction. Manhattan NMF is a variant version of NMF that uses a L-1-norm cost function as the objective function instead of the L-2-norm cost function. Manhattan NMF can be formulated as a nonconvex nonsmooth optimization problem. An algorithm framework for solving the Manhattan NMF problem based on the alternating direction method of multiplication is presented to us. Compared with the existed algorithm, our proposed algorithm is more effective by experiments on synthetic and real data sets.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Proximal Alternating-Direction-Method-of-Multipliers-Incorporated Nonnegative Latent Factor Analysis
    Fanghui Bi
    Xin Luo
    Bo Shen
    Hongli Dong
    Zidong Wang
    [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (06) : 1388 - 1406
  • [22] A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization
    Hou, Liangshao
    Chu, Delin
    Liao, Li-Zhi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5355 - 5369
  • [23] An Inertial Alternating Direction Method of Multipliers
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    [J]. MINIMAX THEORY AND ITS APPLICATIONS, 2016, 1 (01): : 29 - 49
  • [24] Parallel alternating direction method of multipliers
    Yan, Jiaqi
    Guo, Fanghong
    Wen, Changyun
    Li, Guoqi
    [J]. INFORMATION SCIENCES, 2020, 507 : 185 - 196
  • [25] Distributed Alternating Direction Method of Multipliers
    Wei, Ermin
    Ozdaglar, Asuman
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5445 - 5450
  • [26] Emulation Alternating Direction Method of Multipliers
    Routray, Chinmay
    Sahoo, Soumya Ranjan
    [J]. 2022 EIGHTH INDIAN CONTROL CONFERENCE, ICC, 2022, : 403 - 408
  • [27] Alternating Direction Method of Multipliers for Quantization
    Huang, Tianjian
    Singhania, Prajwal
    Sanjabi, Maziar
    Mitra, Pabitra
    Razaviyayn, Meisam
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 208 - +
  • [28] An Adaptive Alternating Direction Method of Multipliers
    Bartz, Sedi
    Campoy, Ruben
    Phan, Hung M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1019 - 1055
  • [29] Accelerated Alternating Direction Method of Multipliers
    Kadkhodaie, Mojtaba
    Christakopoulou, Konstantina
    Sanjabi, Maziar
    Banerjee, Arindam
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 497 - 506
  • [30] Bregman Alternating Direction Method of Multipliers
    Wang, Huahua
    Banerjee, Arindam
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27