Topology Change Aware Data-Driven Probabilistic Distribution State Estimation Based on Gaussian Process

被引:6
|
作者
Cao, Di [1 ]
Zhao, Junbo [2 ]
Hu, Weihao [1 ]
Liao, Qishu [1 ]
Huang, Qi [1 ,3 ]
Chen, Zhe [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
关键词
Topology; Network topology; Training; Task analysis; Kernel; Switches; State estimation; Distribution system state estimation; Gaussian process regression; topology change; machine learning; DISTRIBUTION-SYSTEMS; GENERATION;
D O I
10.1109/TSG.2022.3204221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the distribution system state estimation (DSSE) with unknown topology change. A specific kernel that can transfer across tasks is adopted to find relevant patterns from samples under different topologies and induce knowledge transfer. This enables the proposed method to achieve effective inductive reasoning when only limited data are available under a new topology. The Bayesian inference inherently allows us to quantify the uncertainties of the DSSE results. Comparative results with other methods on IEEE test systems demonstrate the improved accuracy and robustness against topology change.
引用
收藏
页码:1317 / 1320
页数:4
相关论文
共 50 条
  • [41] Topology Identification of Distribution Networks Using a Split-EM Based Data-Driven Approach
    Ma, Li
    Wang, Lingfeng
    Liu, Zhaoxi
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 2019 - 2031
  • [42] Data-driven inference of passivity properties via Gaussian process optimization
    Romer, Anne
    Trimpe, Sebastian
    Allgoewer, Frank
    [J]. 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 29 - 35
  • [43] On Nonstationary Gaussian Process Model for Solving Data-Driven Optimization Problems
    Hu, Caie
    Zeng, Sanyou
    Li, Changhe
    Zhao, Fei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2440 - 2453
  • [44] Bad data identification for power systems state estimation based on data-driven and interval analysis
    Zhang, Xu
    Yan, Wei
    Lu, Zhengmei
    Tan, Hong
    Li, Hui
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2023, 217
  • [45] Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven
    Ding, Yang
    Ye, Xiao-Wei
    Guo, Yong
    Zhang, Ru
    Ma, Zhi
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2023, 73
  • [46] Data-driven estimation of change-points with mean shift
    Yang, Wenzhi
    Liu, Huanshuo
    Wang, Yiwei
    Wang, Xuejun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 130 - 153
  • [47] Data-driven estimation of change-points with mean shift
    Wenzhi Yang
    Huanshuo Liu
    Yiwei Wang
    Xuejun Wang
    [J]. Journal of the Korean Statistical Society, 2023, 52 : 130 - 153
  • [48] PaToPaEM: A Data-Driven Parameter and Topology Joint Estimation Framework for Time-Varying System in Distribution Grids
    Yu, Jiafan
    Weng, Yang
    Rajagopal, Ram
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (03) : 1682 - 1692
  • [49] Progress of Data-Driven Process Monitoring for Nonlinear and Non-Gaussian Industry Process
    Wang, Peiliang
    He, Wuming
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2013, : 71 - 73
  • [50] Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion
    Lee, Seungjoon
    Dietrich, Felix
    Karniadakis, George E.
    Kevrekidis, Ioannis G.
    [J]. INTERFACE FOCUS, 2019, 9 (03)