Topology Change Aware Data-Driven Probabilistic Distribution State Estimation Based on Gaussian Process

被引:6
|
作者
Cao, Di [1 ]
Zhao, Junbo [2 ]
Hu, Weihao [1 ]
Liao, Qishu [1 ]
Huang, Qi [1 ,3 ]
Chen, Zhe [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[4] Aalborg Univ, Dept Energy Technol, Aalborg, Denmark
关键词
Topology; Network topology; Training; Task analysis; Kernel; Switches; State estimation; Distribution system state estimation; Gaussian process regression; topology change; machine learning; DISTRIBUTION-SYSTEMS; GENERATION;
D O I
10.1109/TSG.2022.3204221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the distribution system state estimation (DSSE) with unknown topology change. A specific kernel that can transfer across tasks is adopted to find relevant patterns from samples under different topologies and induce knowledge transfer. This enables the proposed method to achieve effective inductive reasoning when only limited data are available under a new topology. The Bayesian inference inherently allows us to quantify the uncertainties of the DSSE results. Comparative results with other methods on IEEE test systems demonstrate the improved accuracy and robustness against topology change.
引用
收藏
页码:1317 / 1320
页数:4
相关论文
共 50 条
  • [1] A Data-Driven Topology Estimation For Distribution Grid
    Liang, Haiwei
    Tong, Li
    Zou, Xudong
    [J]. PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1020 - 1023
  • [2] A Data-Driven Topology Estimation for Distribution Grid
    Liang, Haiwei
    Tong, Li
    Zou, Xudong
    [J]. Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications, ICIEA 2021, 2021, : 1020 - 1023
  • [3] Data-Driven Topology Estimation
    Weng, Yang
    Faloutsos, Christos
    Ilic, Marija D.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2014, : 560 - 565
  • [4] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    [J]. ENERGY, 2020, 205
  • [5] Topology Aware Data-Driven Inverse Kinematics
    Ho, Edmond S. L.
    Shum, Hubert P. H.
    Cheung, Yiu-ming
    Yuen, P. C.
    [J]. COMPUTER GRAPHICS FORUM, 2013, 32 (07) : 61 - 70
  • [6] Battery state-of-charge estimation using data-driven Gaussian process Kalman filters
    Lee, Kwang-Jae
    Lee, Won-Hyung
    Kim, Kwang-Ki K.
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 72
  • [7] Data-Driven Topology Estimation with Limited Sensors in Radial Distribution Feeders
    Bariya, Mohini
    von Meier, Alexandra
    Ostfeld, Aminy
    Ratnam, Elizabeth
    [J]. 2018 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2018, : 183 - 188
  • [8] Data-Driven Learning-Based Optimization for Distribution System State Estimation
    Zamzam, Ahmed S.
    Fu, Xiao
    Sidiropoulos, Nicholas D.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4796 - 4805
  • [9] Data-Driven Reachability Analysis for Gaussian Process State Space Models
    Griffioen, Paul
    Arcak, Murat
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4100 - 4105
  • [10] DISTRIBUTION SYSTEM STATE ESTIMATION VIA DATA-DRIVEN AND PHYSICS-AWARE DEEP NEURAL NETWORKS
    Zhang, Liang
    Wang, Gang
    Giannakis, Georgios B.
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 258 - 262