Evidence for increasing influence of atmospheric teleconnections on water levels in the Great Lakes

被引:9
|
作者
Saber, Ali [1 ]
Cheng, Vincent Y. S. [1 ,2 ]
Arhonditsis, George B. [1 ]
机构
[1] Univ Toronto, Dept Phys & Environm Sci, Ecol Modelling Lab, Toronto, ON M1C 1A4, Canada
[2] Environm & Climate Change Canada, Climate Res Div, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada
关键词
Lake water budget; Extreme water levels; Lake Huron-Michigan; Climate Oscillations; Climate change; Adaptive management; MULTIPLE-WAVELET COHERENCE; LAND-USE CHANGE; CLIMATE-CHANGE; MICHIGAN; STREAMFLOW; OSCILLATION; VARIABILITY; IMPACTS; TRENDS; REGION;
D O I
10.1016/j.jhydrol.2022.128655
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Understanding the variability and predominant drivers of water level fluctuations in large water bodies is critical for the development of proactive mitigation plans in the nearshore zone. Here, for the first time, we reconstructed the individual and collective influence of the Atlantic Multi-decadal Oscillation, Pacific Decadal Oscillation, region 3.4 of El Nin similar to o-Southern Oscillation, and North Atlantic Oscillation on Lake Huron-Michigan's water budget components, including water levels, over-lake precipitation, evaporation, runoff, and river flow rates over a 115-year period. Conducting wavelet spectral analysis on the reconstructed impact of large-scale climate oscillations revealed the emergence of quasi-periodic and non-stationary fluctuations along with frequency shifts in hydrological variables, highlighting their increasingly stronger signature on water levels after 1980. After removing the atmospheric teleconnection effects, the residual hydrological time series provided evidence of gradual changes in runoff and river flow rates and their relationships with precipitation, reflecting the effects of intensifying anthropogenic activities on the regional water cycle over the past decades. Considering the uncertainty pertaining to the magnitude and frequency of atmospheric teleconnections in a changing climate, the findings of our study can offer a new perspective in our understanding of the drivers of water level variability along the shoreline and/or the navigability of shallow waters in the Great Lakes.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The relationship between great lakes water levels, wave energies, and shoreline damage
    Meadows, GA
    Meadows, LA
    Wood, WL
    Hubertz, JM
    Perlin, M
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1997, 78 (04) : 675 - 683
  • [32] Hydroclimatic factors of the recent record drop in Laurentian Great Lakes water levels
    Assel, RA
    Quinn, FH
    Sellinger, CE
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (08) : 1143 - +
  • [33] Model-based prediction of water levels for the Great Lakes: a comparative analysis
    Kurt, Onur
    EARTH SCIENCE INFORMATICS, 2024, 17 (04) : 3333 - 3349
  • [34] Hydroclimatic analysis of rising water levels in the Great rift Valley Lakes of Kenya
    Herrnegger, Mathew
    Stecher, Gabriel
    Schwatke, Christian
    Olang, Luke
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2021, 36
  • [35] Introduction to "Holocene water levels and paleo-hydrology of the Laurentian Great Lakes"
    Lewis, C. F. Michael
    King, John W.
    JOURNAL OF PALEOLIMNOLOGY, 2012, 47 (03) : 293 - 297
  • [36] Long-term trends in the seasonal cycle of Great Lakes water levels
    Lenters, JD
    JOURNAL OF GREAT LAKES RESEARCH, 2001, 27 (03) : 342 - 353
  • [37] POTENTIAL VARIATION OF GREAT LAKES WATER LEVELS: A HYDROLOGIC RESPONSE ANALYSIS.
    Hartmann, Holly C.
    NOAA Technical Memorandum, 1988, ERL (GLERL-68):
  • [38] SIMULATION OF NONSTATIONARY, NON-GAUSSIAN WATER LEVELS ON GREAT-LAKES
    WALTON, TL
    BORGMAN, LE
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1990, 116 (06): : 664 - 685
  • [39] VARIATION OF GREAT-LAKES WATER LEVELS DERIVED FROM GEOSAT ALTIMETRY
    MORRIS, CS
    GILL, SK
    WATER RESOURCES RESEARCH, 1994, 30 (04) : 1009 - 1017
  • [40] Introduction to “Holocene water levels and paleo-hydrology of the Laurentian Great Lakes”
    C. F. Michael Lewis
    John W. King
    Journal of Paleolimnology, 2012, 47 : 293 - 297