Classification of naturally graded nilpotent associative algebras

被引:0
|
作者
Karimjanov, I. A. [1 ,2 ,3 ]
机构
[1] Andijan State Univ, Dept Math, Andijan, Uzbekistan
[2] Uzbek Acad Sci, V I Romanovskiy Inst Math, Tashkent, Uzbekistan
[3] Andijan State Univ, Dept Math, 129 Univ St, Andijan 170100, Uzbekistan
关键词
Associative algebras; characteristic sequence; filiform; left multiplication operator; naturally graded; nilpotent; null-filiform; quasi-filiform;
D O I
10.1080/00927872.2022.2148257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we consider n- dimensional naturally graded nilpotent associative algebras with the characteristic sequence C(A)=(n-m,m) over an algebraically closed field of characteristic zero. There are two types of such algebras. We give the algebraic classification up to isomorphism of both types of algebras. Moreover, we prove that there are no such algebras of the second type for n > 2m+1.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 50 条
  • [21] Frobenius Relations for Associative Lie Nilpotent Algebras
    Pchelintsev, S. V.
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 414 - 419
  • [22] Frobenius Relations for Associative Lie Nilpotent Algebras
    S. V. Pchelintsev
    Mathematical Notes, 2023, 113 : 414 - 419
  • [23] ON THE ACTION OF DERIVATIONS ON NILPOTENT IDEALS OF ASSOCIATIVE ALGEBRAS
    Luchko, V. S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (07) : 1187 - 1191
  • [24] CONSTRUCTION OF NILPOTENT ASSOCIATIVE ALGEBRAS WITH FEW RELATIONS
    WISLICENY, I
    MATHEMATISCHE NACHRICHTEN, 1990, 147 : 75 - 82
  • [25] On the action of derivations on nilpotent ideals of associative algebras
    V. S. Luchko
    Ukrainian Mathematical Journal, 2009, 61 : 1187 - 1191
  • [26] Classification of Lie algebras with naturally graded quasi-filiform nilradicals
    Ancochea Bermudez, J. M.
    Campoamor-Stursberg, R.
    Garcia Vergnolle, L.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2168 - 2186
  • [27] Classification of complex naturally graded quasi-filiform Zinbiel algebras
    Adashev, J. Q.
    Khuhoyberdiyev, A. Kh.
    Omirov, B. A.
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 1 - 11
  • [28] The classification of nilpotent Bol algebras
    Abdelwahab, Hani
    Calderon, Antonio J.
    Ouaridi, Amir Fernandez
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1330 - 1343
  • [29] The algebraic classification of nilpotent algebras
    Kaygorodov, Ivan
    Khrypchenko, Mykola
    Lopes, Samuel A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (12)
  • [30] The geometric classification of nilpotent algebras
    Kaygorodov, Ivan
    Khrypchenko, Mykola
    Lopes, Samuel A.
    JOURNAL OF ALGEBRA, 2023, 633 : 857 - 886