Slack Hopf monads

被引:0
|
作者
Bruguieres, Alain [1 ]
Haim, Mariana [2 ]
Franco, Ignacio Lopez [3 ]
机构
[1] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, CNRS, CC 051, Pl Eugene Bataillon, F-34095 Montpellier 5, France
[2] Univ Republica, Fac Ciencias, Ctr Matemat, Igua 4225, Montevideo, Uruguay
[3] Univ Republ, Dept Matemat & Aplicac, CURE, Tacuarembo S-N, Maldonado, Uruguay
关键词
Hopf monad; Slack Hopf monad; Magma category; Slack closed functor; Internal Hom; Quasi Hopf algebra;
D O I
10.1016/j.jalgebra.2023.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hopf monads generalise Hopf algebras. They clarify several aspects of the theory of Hopf algebras and capture several related structures such as weak Hopf algebras and Hopf al-gebroids. However, important parts of Hopf algebra theory are not reached by Hopf monads, most noticeably Drinfeld's quasi-Hopf algebras. In this paper we introduce a generalisa-tion of Hopf monads, that we call slack Hopf monads. This generalisation retains a clean theory and is flexible enough to encompass quasi-Hopf algebras as examples. A slack Hopf monad is a colax magma monad T on a magma category C such that the forgetful functor UT : CT -> C 'slackly' preserves internal Homs. We give a number of different descriptions of slack Hopf monads, and study special cases such as slack Hopf monads on cartesian categories and k-linear exact slack Hopf monads on Vectk, that is comagma algebras such that a modi-fied fusion operator is invertible. In particular, we characterise quasi-Hopf algebras in terms of slackness.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [41] Dijkstra Monads for Free
    Ahman, Danel
    Hritcu, Catalin
    Maillard, Kenji
    Martinez, Guido
    Plotkin, Gordon
    Protzenko, Jonathan
    Rastogi, Aseem
    Swamy, Nikhil
    ACM SIGPLAN NOTICES, 2017, 52 (01) : 515 - 529
  • [42] Diagrammatics for Comodule Monads
    Halbig, Sebastian
    Zorman, Tony
    APPLIED CATEGORICAL STRUCTURES, 2024, 32 (05)
  • [43] Effectuses from Monads
    Jacobs, Bart
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 325 : 169 - 183
  • [44] Monads can be rough
    Eklund, Patrik
    Galan, M. A.
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2006, 4259 : 77 - 84
  • [45] Generalising monads to arrows
    Hughes, J
    SCIENCE OF COMPUTER PROGRAMMING, 2000, 37 (1-3) : 67 - 111
  • [46] Trajectories in Random Monads
    A. D. Ramos
    A. Toom
    Journal of Statistical Physics, 2011, 142 : 201 - 219
  • [47] MONADS GENERATED BY MONOIDS
    LINDNER, H
    MANUSCRIPTA MATHEMATICA, 1975, 15 (02) : 139 - 152
  • [48] NOTIONS OF COMPUTATION AND MONADS
    MOGGI, E
    INFORMATION AND COMPUTATION, 1991, 93 (01) : 55 - 92
  • [49] Monads on composition graphs
    Schröder, L
    APPLIED CATEGORICAL STRUCTURES, 2002, 10 (03) : 221 - 236
  • [50] Azumaya Monads and Comonads
    Mesablishvili, Bachuki
    Wisbauer, Robert
    AXIOMS, 2015, 4 (01): : 32 - 70