Design and Characterization of a Data Converter in a SiC CMOS Technology for Harsh Environment Sensing Applications

被引:0
|
作者
Niu, Yunfan [1 ]
Mo, Jiarui [1 ]
May, Alexander [2 ]
Rommel, Mathias [2 ]
Rossi, Chiara [2 ]
Romijn, Joost [1 ]
Zhang, Guoqi [1 ]
Vollebregt, Sten [1 ]
机构
[1] Delft Univ Technol, Dept Microelect, Delft, Netherlands
[2] Fraunhofer Inst Integrated Syst & Device Technol, Erlangen, Germany
来源
基金
欧盟地平线“2020”;
关键词
silicon carbide; analog-to-digital converter; harsh-enviromnent;
D O I
10.1109/SENSORS56945.2023.10325061
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work presents the design and characterization of an analog-to-digital converter (ADC) with silicon carbide (SiC) for sensing applications in harsh environments. The SiC-based ADC is implemented with the state-of-the-art low-voltage SiC complementary-metal-oxide-semiconductor (CMOS) technology developed by Fraunhofer IISB. Two types of ADCs, i.e., a 4-bit flash ADC and a 6-bit successive-approximation (SAR) ADC, are designed and simulated up to 300 degrees Celsius. The measurement results show that the 4-bit SiC flash ADC can operate reliably up to at least 200 degrees Celsius, which outperforms the Si counterpart regarding the maximum operating temperature.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Applications-Based Design of SiC Technology.
    Wright, N. G.
    Johnson, C. M.
    Horsfall, A. B.
    Buftay, C.
    Vassilevski, K.
    Loh, W. S.
    Skuriat, R.
    Agyakwa, P.
    SILICON CARBIDE AND RELATED MATERIALS 2007, PTS 1 AND 2, 2009, 600-603 : 919 - +
  • [42] Design of a Rigid UWB Log Spiral Antenna for GPR Applications in Harsh Environment
    Richardson, Matthew
    Bauder, Chandler J.
    Kazemi, Robab
    Fathy, Aly E.
    2020 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS 2020), 2020, : 262 - 264
  • [43] Comprehensive design optimization of a wind power converter using SiC technology
    Hussein, Abdallah
    Castellazzi, Alberto
    2018 6TH IEEE INTERNATIONAL CONFERENCE ON SMART GRID (ICSMARTGRIDS), 2018, : 34 - 38
  • [44] SiC Wirebond Multichip Phase-Leg Module Packaging Design and Testing for Harsh Environment
    Ning, Puqi
    Lai, Rixin
    Huff, Daniel
    Wang, Fei
    Ngo, Khai D. T.
    Immanuel, Vikram D.
    Karimi, Kamiar J.
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (01) : 16 - 23
  • [45] Tantalum capacitor technology: Options for high-temperature and harsh-environment applications
    Reynolds C.
    Reynolds, Chris (chris.reynolds@avx.com), 1600, Institute of Electrical and Electronics Engineers Inc., United States (04): : 43 - 47
  • [46] Highly Linear Temperature Sensor Using GaN-on-SiC Heterojunction Diode for Harsh Environment Applications
    Madhusoodhanan, Syam
    Koukourinkov, Sabina
    White, Thomas
    Chen, Zhong
    Zhao, Yue
    Ware, Morgan E.
    2016 IEEE 4TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), 2016, : 171 - 175
  • [47] Amplifier Based on 4H-SiC MOSFET Operation at 500 °C for Harsh Environment Applications
    Vuong Van Cuong
    Meguro, Tatsuya
    Ishikawa, Seiji
    Maeda, Tomonori
    Sezaki, Hiroshi
    Kuroki, Shin-Ichiro
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4194 - 4199
  • [48] Liquid level sensing for harsh environment applications using distributed fiber optic temperature measurements
    Petrie, Christian M.
    McDuffee, Joel L.
    SENSORS AND ACTUATORS A-PHYSICAL, 2018, 282 : 114 - 123
  • [49] Femtosecond laser induced optical fiber Bragg gratings (FBGs) for harsh environment sensing applications
    Mihailov, S. J.
    Grobnic, D.
    Walker, R. B.
    Lu, P.
    Ding, H.
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [50] A hermetic thick film screen-printed ceramic cavity for harsh environment sensing applications
    Sippola, Clayton B.
    Ahn, Chong H.
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (03): : 439 - 443