Regeneration of direct air CO2 capture liquid via alternating electrocatalysis

被引:5
|
作者
Xu, Yi [1 ,2 ]
Liu, Shijie [1 ]
Edwards, Jonathan P. [1 ]
Xiao, Yurou Celine [1 ]
Zhao, Yong [1 ]
Miao, Rui Kai [1 ]
Fan, Mengyang [1 ]
Chen, Yuanjun [3 ]
Huang, Jianan Erick [3 ]
Sargent, Edward H. [3 ]
Sinton, David [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ANODIC-OXIDATION; IODINE; EVOLUTION; CHLORINE; DENSITY;
D O I
10.1016/j.joule.2023.07.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct air capture (DAC) of carbon dioxide (CO2) can potentially contribute to mitigating past and offsetting hard-to-abate future emissions; however, the regeneration of DAC capture liquids requires high temperatures and thermal energy inputs with emissions that diminish their net environmental benefit. Here, we present a low-temperature electrochemical process to regenerate alkaline capture liquids via alternating electrocatalysis (AE). Colocating oxidation and reduction reactions on a single electrode, cycled between electrolyzer and fuel cell modes, mitigates film formation and losses in the regeneration of alkali hydroxide and hydrogen halide. CO2 can be captured and released with an energy input of 6.4 GJ/tCO2 at 100 mA cm -2 and an emission intensity of -11 kg CO2e/tCO2.
引用
收藏
页码:2107 / 2117
页数:12
相关论文
共 50 条
  • [1] Direct air capture of CO2via cyclic viologen electrocatalysis
    Liu, Shijie
    Zhang, Jinqiang
    Li, Feng
    Edwards, Jonathan P.
    Xiao, Yurou Celine
    Kim, Dongha
    Papangelakis, Panagiotis
    Kim, Jiheon
    Elder, David
    De Luna, Phil
    Fan, Mengyang
    Lee, Geonhui
    Miao, Rui Kai
    Ghosh, Tanushree
    Yan, Yu
    Chen, Yuanjun
    Zhao, Yong
    Guo, Zunmin
    Tian, Cong
    Li, Peihao
    Xu, Yi
    Sargent, Edward H.
    Sinton, David
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (03) : 1266 - 1278
  • [2] Direct Air Capture of CO2 via Reactive Crystallization
    Stamberga, Diana
    Einkauf, Jeffrey D.
    Liu, Meishen
    Custelcean, Radu
    [J]. CRYSTAL GROWTH & DESIGN, 2024, 24 (11) : 4556 - 4562
  • [3] Pricing CO2 Direct Air Capture
    Sutherland, Brandon R.
    [J]. JOULE, 2019, 3 (07) : 1571 - 1573
  • [4] Chemisorption and regeneration of amine-based CO2 sorbents in direct air capture
    Duan, X.
    Song, G.
    Lu, G.
    Wang, Y.
    Sun, J.
    Chen, A.
    Xie, X.
    [J]. MATERIALS TODAY SUSTAINABILITY, 2023, 23
  • [5] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [6] Direct capture and separation of CO2 from air
    Teong, Siew Ping
    Zhang, Yugen
    [J]. GREEN ENERGY & ENVIRONMENT, 2024, 9 (03) : 413 - 416
  • [7] Review of CO2 direct air capture adsorbents
    Wang, Tao
    Dong, Hao
    Hou, Cheng-Long
    Wang, Xin-Ru
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [8] Direct Air Capture of CO2 Using Solvents
    Custelcean, Radu
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 217 - 234
  • [9] Sorption direct air capture with CO2 utilization
    Jiang, L.
    Liu, W.
    Wang, R. Q.
    Gonzalez-Diaz, A.
    Rojas-Michaga, M. F.
    Michailos, S.
    Pourkashanian, M.
    Zhang, X. J.
    Font-Palma, C.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2023, 95
  • [10] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952