A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrödinger equation hierarchy

被引:3
|
作者
Wang, Xue [1 ]
Du, Dianlou [2 ]
机构
[1] Henan Univ Engn, Coll Sci, Zhengzhou 451191, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal integrable system; NNLS equation; action-angle variables; Lie-Poisson Hamiltonian systems; INVERSE SCATTERING; SOLITON-SOLUTIONS; RESTRICTED FLOWS; COUPLED KDV; STATIONARY;
D O I
10.1142/S0219887824500452
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the Lenard gradient sequence, a hierarchy of the nonlocal nonlinear Schrodinger (NNLS) equations is obtained. Using the Lax representation, the nonlocal finite-dimensional integrable system with Lie-Poisson structure is presented. Then, under coordinate transformation, the nonlocal finite-dimensional integrable system with Lie-Poisson structure can be expressed as the canonical Hamiltonian system of the standard symplectic structures. Moreover, the parametric representation of the NNLS equation and the nonlocal complex modified Kortewegde Vries (NcmKdV) equation are constructed. Finally, according to the Hamilton-Jacobi theory, the action-angle variables are built and the inversion problem related to the Lie-Poisson Hamiltonian systems is discussed.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation
    André de Laire
    Guillaume Dujardin
    Salvador López-Martínez
    Journal of Nonlinear Science, 2024, 34
  • [22] Exotic vector freak waves in the nonlocal nonlinear Schr?dinger equation
    Wang, Xiu-Bin
    Tian, Shou-Fu
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 442
  • [23] Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation
    Xinxin Ma
    Yonghui Kuang
    Theoretical and Mathematical Physics, 2022, 210 : 31 - 45
  • [24] Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation
    Xiu-Bin Wang
    Bo Han
    Theoretical and Mathematical Physics, 2021, 206 : 40 - 67
  • [25] Nonlocal Reductions of The Multicomponent Nonlinear Schrödinger Equation on Symmetric Spaces
    G. G. Grahovski
    J. I. Mustafa
    H. Susanto
    Theoretical and Mathematical Physics, 2018, 197 : 1430 - 1450
  • [26] Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation
    de Laire, Andre
    Dujardin, Guillaume
    Lopez-Martinez, Salvador
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
  • [27] Integrable nonlocal finite-dimensional Hamiltonian systems related to the Ablowitz-Kaup-Newell-Segur system
    Xia, Baoqiang
    Zhou, Ruguang
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [28] Spontaneous emergence of two-dimensional quasibreathers in a nonlinear Schrödinger equation with nonlocal derivatives
    Hrabski, Alexander
    Pan, Yulin
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [29] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [30] A finite-dimensional integrable system related to a new coupled KdV hierarchy
    Qin, Zhenyun
    PHYSICS LETTERS A, 2006, 355 (06) : 452 - 459