Quantum process tomography with unsupervised learning and tensor networks

被引:23
|
作者
Torlai, Giacomo [1 ,2 ]
Wood, Christopher J. [3 ]
Acharya, Atithi [2 ,4 ]
Carleo, Giuseppe [2 ,5 ]
Carrasquilla, Juan [6 ]
Aolita, Leandro [7 ,8 ]
机构
[1] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[2] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Rutgers State Univ, Phys & Astron Dept, Piscataway, NJ 08854 USA
[5] Ecole Polytechn Federale Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[6] MaRS Ctr, Vector Inst, Toronto, ON M5G 1M1, Canada
[7] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[8] Univ Fed Rio de Janeiro, Inst Fis, POB 68528, BR-21941972 Rio De Janeiro, Brazil
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
DYNAMICS; STATES;
D O I
10.1038/s41467-023-38332-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, remains the quintessential primitive to completely characterize quantum devices. However, due to the exponential scaling of the required data and classical post-processing, its range of applicability is typically restricted to one- and two-qubit gates. Here, we present a technique for performing quantum process tomography that addresses these issues by combining a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning. We demonstrate our technique through synthetically generated data for ideal one- and two-dimensional random quantum circuits of up to 10 qubits, and a noisy 5-qubit circuit, reaching process fidelities above 0.99 using several orders of magnitude fewer (single-qubit) measurement shots than traditional tomographic techniques. Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multipass quantum process tomography
    Stanchev, Stancho G.
    Vitanov, Nikolay V.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] Simplified quantum process tomography
    Branderhorst, M. P. A.
    Nunn, J.
    Walmsley, I. A.
    Kosut, R. L.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [43] Limitations of quantum process tomography
    Shalm, LK
    Mitchell, MW
    Steinberg, AM
    QUANTUM OPTICS AND APPLICATIONS IN COMPUTING AND COMMUNICATIONS II, 2005, 5631 : 60 - 67
  • [44] Positive unlabeled learning with tensor networks
    Zunkovic, Bojan
    NEUROCOMPUTING, 2023, 552
  • [45] Learning and Reasoning with Logic Tensor Networks
    Serafini, Luciano
    Garcez, Artur S. d'Avila
    AI*IA 2016: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2016, 10037 : 334 - 348
  • [46] Quantum process tomography of the quantum Fourier transform
    Weinstein, YS
    Havel, TF
    Emerson, J
    Boulant, N
    Saraceno, M
    Lloyd, S
    Cory, DG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13): : 6117 - 6133
  • [47] QUANTUM UNSUPERVISED AND SUPERVISED LEARNING ON SUPERCONDUCTING PROCESSORS
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (7-8) : 541 - 552
  • [48] Quantum teleportation with atoms:: quantum process tomography
    Riebe, M.
    Chwalla, M.
    Benhelm, J.
    Haeffner, H.
    Haensel, W.
    Roos, C. F.
    Blatt, R.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [49] Quantum unsupervised and supervised learning on superconducting processors
    Sarma, Abhijat
    Chatterjee, Rupak
    Gili, Kaitlin
    Yu, Ting
    Quantum Information and Computation, 2020, 20 (7-8): : 541 - 552
  • [50] Quantum spectral clustering algorithm for unsupervised learning
    Qingyu LI
    Yuhan HUANG
    Shan JIN
    Xiaokai HOU
    Xiaoting WANG
    ScienceChina(InformationSciences), 2022, 65 (10) : 43 - 52