Contrastive Learning Network Based on Causal Attention for Fine-Grained Ship Classification in Remote Sensing Scenarios

被引:6
|
作者
Pan, Chaofan [1 ]
Li, Runsheng [1 ]
Hu, Qing [1 ]
Niu, Chaoyang [1 ]
Liu, Wei [1 ]
Lu, Wanjie [1 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Inst Data & Target Engn, Zhengzhou 450001, Peoples R China
关键词
ship targets; fine-grained classification; remote sensing images; causal attention; comparative learning;
D O I
10.3390/rs15133393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine-grained classification of ship targets is an important task in remote sensing, having numerous applications in military reconnaissance and sea surveillance. Due to the influence of various imaging factors, ship targets in remote sensing images have considerable inter-class similarity and intra-class difference, which brings significant challenges to fine-grained classification. In response, we developed a contrastive learning network based on causal attention (C2Net) to improve the model's fine-grained identification ability from local details. The asynchronous feature learning mode of "decoupling + aggregation" is adopted to reduce the mutual influence between local features and improve the quality of local features. In the decoupling stage, the feature vectors of each part of the ship targets are de-correlated using a decoupling function to prevent feature adhesion. Considering the possibility of false associations between results and features, the decoupled part is designed based on the counterfactual causal attention network to enhance the model's predictive logic. In the aggregation stage, the local attention weight learned in the decoupling stage is used to carry out feature fusion on the trunk feature weight. Then, the proposed feature re-association module is used to re-associate and integrate the target local information contained in the fusion feature to obtain the target feature vector. Finally, the aggregation function is used to complete the clustering process of the target feature vectors and fine-grained classification is realized. Using two large-scale datasets, the experimental results show that the proposed C2Net method had better fine-grained classification than other methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Sentiment Classification of Reviews Based on BiGRU Neural Network and Fine-grained Attention
    Feng, Xuanzhen
    Liu, Xiaohong
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229
  • [32] A fine-grained classification method based on self-attention Siamese network
    He Can
    Yuan Guowu
    Wu Hao
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 148 - 154
  • [33] Fine-Grained Visual Classification Network Based on Fusion Pooling and Attention Enhancement
    Xiao B.
    Guo J.
    Zhang X.
    Wang M.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (07): : 661 - 670
  • [34] A collaborative gated attention network for fine-grained visual classification
    Zhu, Qiangxi
    Kuang, Wenlan
    Li, Zhixin
    DISPLAYS, 2023, 79
  • [35] Subtler mixed attention network on fine-grained image classification
    Liu, Chao
    Huang, Lei
    Wei, Zhiqiang
    Zhang, Wenfeng
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7903 - 7916
  • [36] Subtler mixed attention network on fine-grained image classification
    Chao Liu
    Lei Huang
    Zhiqiang Wei
    Wenfeng Zhang
    Applied Intelligence, 2021, 51 : 7903 - 7916
  • [37] Fine-Grained Image Classification Network Based on Reinforcement and Complementary Learning
    Jing, Hu
    Meng-Yao, Wang
    Fei, Wang
    Ru-Min, Zhang
    Bing-Quan, Lian
    IEEE ACCESS, 2024, 12 : 28810 - 28817
  • [38] SHIP DETECTION AND FINE-GRAINED RECOGNITION IN LARGE-FORMAT REMOTE SENSING IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
    Li, Jingrun
    Tian, Jinwen
    Gao, Peng
    Li, Linfeng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2859 - 2862
  • [39] Learning Hierarchal Channel Attention for Fine-grained Visual Classification
    Guan, Xiang
    Wang, Guoqing
    Xu, Xing
    Bin, Yi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5011 - 5019
  • [40] Attentive Contrast Learning Network for Fine-Grained Classification
    Liu, Fangrui
    Liu, Zihao
    Liu, Zheng
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 92 - 104