Contrastive Learning Network Based on Causal Attention for Fine-Grained Ship Classification in Remote Sensing Scenarios

被引:6
|
作者
Pan, Chaofan [1 ]
Li, Runsheng [1 ]
Hu, Qing [1 ]
Niu, Chaoyang [1 ]
Liu, Wei [1 ]
Lu, Wanjie [1 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Inst Data & Target Engn, Zhengzhou 450001, Peoples R China
关键词
ship targets; fine-grained classification; remote sensing images; causal attention; comparative learning;
D O I
10.3390/rs15133393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine-grained classification of ship targets is an important task in remote sensing, having numerous applications in military reconnaissance and sea surveillance. Due to the influence of various imaging factors, ship targets in remote sensing images have considerable inter-class similarity and intra-class difference, which brings significant challenges to fine-grained classification. In response, we developed a contrastive learning network based on causal attention (C2Net) to improve the model's fine-grained identification ability from local details. The asynchronous feature learning mode of "decoupling + aggregation" is adopted to reduce the mutual influence between local features and improve the quality of local features. In the decoupling stage, the feature vectors of each part of the ship targets are de-correlated using a decoupling function to prevent feature adhesion. Considering the possibility of false associations between results and features, the decoupled part is designed based on the counterfactual causal attention network to enhance the model's predictive logic. In the aggregation stage, the local attention weight learned in the decoupling stage is used to carry out feature fusion on the trunk feature weight. Then, the proposed feature re-association module is used to re-associate and integrate the target local information contained in the fusion feature to obtain the target feature vector. Finally, the aggregation function is used to complete the clustering process of the target feature vectors and fine-grained classification is realized. Using two large-scale datasets, the experimental results show that the proposed C2Net method had better fine-grained classification than other methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Contrastive Learning for Fine-Grained Ship Classification in Remote Sensing Images
    Chen, Jianqi
    Chen, Keyan
    Chen, Hao
    Li, Wenyuan
    Zou, Zhengxia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] An attention cut classification network for fine-grained ship classification in remote sensing images
    Song, Yixuan
    Song, Fei
    Jin, Lei
    Lei, Tao
    Liu, Gang
    Jiang, Ping
    Peng, Zhenming
    REMOTE SENSING LETTERS, 2022, 13 (04) : 418 - 427
  • [3] Multi-scale attention-based adaptive feature fusion network for fine-grained ship classification in remote sensing scenarios
    Liu, Kun
    Zhang, Xiaomeng
    Xu, Zhijing
    Liu, Sidong
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)
  • [4] Multi-scale attention-based adaptive feature fusion network for fine-grained ship classification in remote sensing scenarios
    Liu, Kun
    Zhang, Xiaomeng
    Xu, Zhijing
    Liu, Sidong
    Journal of Applied Remote Sensing, 1600, 18 (03):
  • [5] An Explainable Attention Network for Fine-Grained Ship Classification Using Remote-Sensing Images
    Xiong, Wei
    Xiong, Zhenyu
    Cui, Yaqi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] A Novel Multiscale Contrastive Learning Network for Fine-Grained Ocean Ship Classification
    Dong, Shaokang
    Feng, Jiangfan
    Fang, Dongxu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9989 - 10005
  • [7] Attention-based supervised contrastive learning on fine-grained image classification
    Li, Qian
    Wu, Weining
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (03)
  • [8] Fine-Grained Classification of Remote Sensing Ship Images Based on Improved VAN
    Zhou, Guoqing
    Huang, Liang
    Sun, Qiao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1985 - 2007
  • [9] Fine-Grained Classification of Optical Remote Sensing Ship Images Based on Deep Convolution Neural Network
    Chen, Yantong
    Zhang, Zhongling
    Chen, Zekun
    Zhang, Yanyan
    Wang, Junsheng
    REMOTE SENSING, 2022, 14 (18)
  • [10] Multigranularity Self-Attention Network for Fine-Grained Ship Detection in Remote Sensing Images
    Ouyang, Lihan
    Fang, Leyuan
    Ji, Xinyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 9722 - 9732