Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities

被引:11
|
作者
de la Mata, Felix Fernandez [1 ]
Gijon, Alfonso [1 ]
Molina-Solana, Miguel [1 ,2 ]
Gomez-Romero, Juan [1 ]
机构
[1] Univ Granada, Dept Comp Sci & AI, Granada, Spain
[2] Imperial Coll London, Dept Comp, London, England
关键词
Deep learning; Physics-Informed Neural Networks; Learned simulators; Data-driven simulations;
D O I
10.1016/j.physa.2022.128415
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The last decade has seen a rise in the number and variety of techniques available for data-driven simulation of physical phenomena. One of the most promising approaches is Physics-Informed Neural Networks (PINNs), which can combine both data, obtained from sensors or numerical solvers, and physics knowledge, expressed as partial differential equations. In this work, we investigated the suitability of PINNs to replace current available numerical methods for physics simulations. Although the PINN approach is general and independent of the complexity of the underlying physics equations, a selection of typical heat transfer and fluid dynamics problems was proposed and multiple PINNs were comprehensibly trained and tested to solve them. When PINNs were used as learned simulators, the outcome of our experiments was not entirely satisfactory as not enough accuracy was achieved even though optimal configurations and long training times were used. The main cause for this limitation was found to be the lack of adequate activation functions and specialized architectures, since they proved to have a notable impact on the final accuracy of each model. In turn, PINN architectures showed an accurate behavior when used for parameter inference of partial differential equations from data.(c) 2022 Elsevier B.V. All rights reserved.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Data-driven modeling of Landau damping by physics-informed neural networks
    Qin, Yilan
    Ma, Jiayu
    Jiang, Mingle
    Dong, Chuanfei
    Fu, Haiyang
    Wang, Liang
    Cheng, Wenjie
    Jin, Yaqiu
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [2] Data-driven physics-informed neural networks: A digital twin perspective
    Yang, Sunwoong
    Kim, Hojin
    Hong, Yoonpyo
    Yee, Kwanjung
    Maulik, Romit
    Kang, Namwoo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [3] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189
  • [4] Data-driven building energy efficiency prediction using physics-informed neural networks
    Michalakopoulos, Vasilis
    Pelekis, Sotiris
    Kormpakis, Giorgos
    Karakolis, Vagelis
    Mouzakitis, Spiros
    Askounis, Dimitris
    2024 IEEE CONFERENCE ON TECHNOLOGIES FOR SUSTAINABILITY, SUSTECH, 2024, : 84 - 91
  • [5] Data-driven discovery of turbulent flow equations using physics-informed neural networks
    Yazdani, Shirindokht
    Tahani, Mojtaba
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [7] Data-driven soliton solution implementation based on nonlinear adaptive physics-informed neural networks
    Zhang, Jianlin
    Leng, Yake
    Wu, Chaofan
    Su, Chaoyuan
    NONLINEAR DYNAMICS, 2024, : 1467 - 1488
  • [8] Comparison of Data-Driven and Physics-Informed Neural Networks for Surrogate Modelling of the Huxley Muscle Model
    Milicevic, Bogdan
    Ivanovic, Milos
    Stojanovic, Boban
    Milosevic, Miljan
    Simic, Vladimir
    Kojic, Milos
    Filipovic, Nenad
    APPLIED ARTIFICIAL INTELLIGENCE 2: MEDICINE, BIOLOGY, CHEMISTRY, FINANCIAL, GAMES, ENGINEERING, SICAAI 2023, 2024, 999 : 33 - 37
  • [9] Multifidelity deep operator networks for data-driven and physics-informed problems
    Howard A.A.
    Perego M.
    Karniadakis G.E.
    Stinis P.
    Journal of Computational Physics, 2023, 493
  • [10] Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models
    Schiassi, Enrico
    De Florio, Mario
    D'Ambrosio, Andrea
    Mortari, Daniele
    Furfaro, Roberto
    MATHEMATICS, 2021, 9 (17)