Ill-posedness for a two-component Novikov system in Besov space

被引:1
|
作者
Wu, Xing [1 ]
Li, Min [2 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Jiangxi Univ Finance & Econ, Dept Math, Nanchang 330032, Jiangxi, Peoples R China
关键词
Two-component Novikov system; Ill-posedness; Besov spaces; CAMASSA-HOLM; WELL-POSEDNESS; CAUCHY-PROBLEM; EQUATIONS;
D O I
10.1016/j.jmaa.2023.127171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for a two-component Novikov system on the line. By specially constructed initial data (rho 0, u0) in Bs-1 p,infinity(R) x Bsp,infinity(R) with s >max{2 + p1,52 } and 1 < p< oo, we show that any energy bounded solution starting from (rho 0, u0) does not converge back to (rho 0, u0) in the metric of Bs-1 p,infinity(R) x Bsp,infinity(R) as time goes to zero, thus results in discontinuity of the data-to-solution map and ill-posedness.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [42] Ill-posedness for a system of quadratic nonlinear Schrodinger equations in two dimensions
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    Uriya, Kota
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 136 - 163
  • [43] Ill-posedness for a generalized Camassa-Holm equation with higher-order nonlinearity in the critical Besov space
    Deng, Wei
    Li, Min
    Wu, Xing
    Zhu, Weipeng
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (04): : 843 - 857
  • [44] Ill-posedness of space-variant image deconvolution
    Kieweg, Michael
    Gross, Herbert
    Sievers, Torsten
    Mueller, Lothar
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA VI, 2010, 7800
  • [45] Ill-Posedness Issues on (abcd)-Boussinesq System
    Kwak, Chulkwang
    Maulen, Christopher
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1123 - 1152
  • [46] Ill-posedness for the Zakharov system with generalized nonlinearity
    Biagioni, HA
    Linares, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) : 3113 - 3121
  • [47] Well-posedness and ill-posedness of the stationary Navier-Stokes equations in toroidal Besov spaces
    Tsurumi, Hiroyuki
    NONLINEARITY, 2019, 32 (10) : 3798 - 3819
  • [48] Sharp well-posedness and ill-posedness for the 3-D micropolar fluid system in Fourier-Besov spaces
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 335 - 351
  • [49] Two-component generalizations of the Novikov equation
    Li, Hongmin
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (03) : 390 - 403
  • [50] Two-component generalizations of the Novikov equation
    Hongmin Li
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 390 - 403