Coulomb branches of quiver gauge theories with symmetrizers

被引:12
|
作者
Nakajima, Hiraku [1 ,2 ]
Weekes, Alex [3 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[3] Univ Saskatchewan, Dept Math & Stat, 106 Wiggins Rd, Saskatoon, SK S7N 5E6, Canada
关键词
Coulomb branches; quiver gauge theories; quivers with symmetrizers; shifted Yangian; affine Grassmannian; zastava spaces; MATHEMATICAL DEFINITION; Q-CHARACTERS; VARIETIES; SLICES; REPRESENTATIONS; CRYSTALS; MODULES; SPACE;
D O I
10.4171/JEMS/1176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the mathematical definition of Coulomb branches of 3-dimensional N = 4 SUSY quiver gauge theories due to Nakajima (2016) and Braverman et al. (2018, 2019) to the cases with symmetrizers. We obtain generalized affine Grassmannian slices of type BCFG as examples of the construction, and their deformation quantizations via truncated shifted Yangians. Finally, we study modules over these quantizations and relate them to the lower triangular part of the quantized enveloping algebra of type ADE.
引用
收藏
页码:203 / 230
页数:28
相关论文
共 50 条
  • [41] On three dimensional quiver gauge theories and integrability
    Gaiotto, Davide
    Koroteev, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [42] Finite Heisenberg groups in quiver gauge theories
    Burrington, Benjamin A.
    Liu, James T.
    Pando Zayas, Leopoldo A.
    NUCLEAR PHYSICS B, 2006, 747 (03) : 436 - 454
  • [43] Pseudomoduli dark matter and quiver gauge theories
    Antonio Amariti
    Luciano Girardello
    Alberto Mariotti
    Journal of High Energy Physics, 2010
  • [44] Anomaly cancellation and conformality in quiver gauge theories
    Di Napoli, Edoardo
    Frampton, Paul H.
    PHYSICS LETTERS B, 2006, 638 (04) : 374 - 381
  • [45] On three dimensional quiver gauge theories and integrability
    Davide Gaiotto
    Peter Koroteev
    Journal of High Energy Physics, 2013
  • [46] Counting chiral operators in quiver gauge theories
    Butti, Agostino
    Forcella, Davide
    Hanany, Arnihay
    Vegh, David
    Zaffaroni, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [47] Solving flavor puzzles with quiver gauge theories
    Antebi, YE
    Nir, Y
    Volansky, T
    PHYSICAL REVIEW D, 2006, 73 (07):
  • [48] Comments on quiver gauge theories and matrix models
    Seki, S
    NUCLEAR PHYSICS B, 2003, 661 (1-2) : 257 - 272
  • [49] Equivariant dimensional reduction and quiver gauge theories
    Dolan, Brian P.
    Szabo, Richard J.
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (09) : 2453 - 2466
  • [50] Quiver Gauge Theories from Lie Superalgebras
    Belhaj, Adil
    Brahim Sedra, M.
    AFRICAN REVIEW OF PHYSICS, 2014, 9 : 311 - 316