Properties of synchronous collisions of solitons in the Korteweg-de Vries equation

被引:3
|
作者
Tarasova, Tatiana, V [1 ]
Slunyaev, Alexey, V [1 ]
机构
[1] Inst Appl Phys, Nizhnii Novgorod, Russia
基金
俄罗斯科学基金会;
关键词
Soliton collisions; Korteweg-de Vries equation; Critical soliton density; Statistical moments; ROGUE WAVES; BREATHERS;
D O I
10.1016/j.cnsns.2022.107048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronous collisions of solitons of the Korteweg-de Vries equation are considered as a representative example of the interaction of a large number of solitons in a soliton gas. Statistical properties of the soliton field are examined for a model distribution of soliton amplitudes according to a power law. N-soliton solutions (N <= 50) are constructed with the help of a numerical procedure using the Darboux transformation and 100 -digits arithmetic. It is shown that there exist qualitatively different patterns of evolving multisoliton solutions depending on the amplitude distribution. Collisions of a large number of solitons lead to the decrease of values of statistical moments (the orders from 3 to 7 have been considered). The statistical moments are shown to exhibit long intervals of quasi-stationary behavior in the case of a sufficiently large number of interacting solitons with close amplitudes. These intervals can be characterized by the maximum value of the soliton gas density and by "smoothing'' of the wave fields in integral sense. The analytical estimates describing these degenerate states of interacting solitons are obtained.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Exit Times and Persistence of Solitons for a Stochastic Korteweg-de Vries Equation
    Gautier, Eric
    DYNAMICS, GAMES AND SCIENCE II, 2011, 2 : 343 - 347
  • [22] Stability of the multi-solitons of the modified Korteweg-de Vries equation *
    Le Coz, Stefan
    Wang, Zhong
    NONLINEARITY, 2021, 34 (10) : 7109 - 7143
  • [23] Nonlinear Dynamics of Solitons for the Vector Modified Korteweg-de Vries Equation
    Fenchenko, V.
    Khruslov, E.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (02) : 153 - 168
  • [24] The structure of algebraic solitons and compactons in the generalized Korteweg-de Vries equation
    Pelinovsky, Efim
    Talipova, Tatiana
    Soomere, Tarmo
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 419
  • [25] CYLINDRICAL AND SPHERICAL KORTEWEG-DE VRIES SOLITONS
    KO, K
    KUEHL, HH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 845 - 845
  • [26] Korteweg-de!Vries solitons in relativistic hydrodynamics
    Fogaca, D. A.
    Navarra, F. S.
    PHYSICS LETTERS B, 2007, 645 (5-6) : 408 - 411
  • [27] Dynamics of solitons in a nonintegrable version of the modified Korteweg-de Vries equation
    Kurkina, O. E.
    Kurkin, A. A.
    Ruvinskaya, E. A.
    Pelinovsky, E. N.
    Soomere, T.
    JETP LETTERS, 2012, 95 (02) : 91 - 95
  • [28] Riesz potentials for Korteweg-de Vries solitons
    Vladimir Varlamov
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 41 - 61
  • [29] STABILITY FOR KORTEWEG-DE VRIES EQUATION
    MCKEAN, HP
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (03) : 347 - 353
  • [30] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48