Failure analysis of spar buoy floating offshore wind turbine systems

被引:9
|
作者
Shafiee, Mahmood [1 ]
机构
[1] Univ Kent, Sch Engn, Mech Engn Grp, Canterbury, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
Failure analysis; Floating offshore wind turbine (FOWT); Materials and structures; Mooring system; Fault tree analysis (FTA); Failure mode and effects analysis (FMEA); RELIABILITY-ANALYSIS; RISK-ASSESSMENT;
D O I
10.1007/s41062-022-00982-x
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Predicting Short Term Extreme Response of Spar Offshore Floating Wind Turbine
    Aggarwal, Neeraj
    Manikandan, R.
    Saha, Nilanjan
    8TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS (APAC 2015), 2015, 116 : 47 - 55
  • [32] DYNAMIC RESPONSES OF A SPAR TYPE FLOATING OFFSHORE WIND TURBINE WITH FAILED MOORINGS
    Ren, Yajun
    Venugopal, Vengatesan
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [33] Study on the Dynamic Characteristic for Spar type Floating Foundation of Offshore Wind Turbine
    Zhang, Ruoyu
    Chen, Chaohe
    Tang, Yougang
    PROGRESS IN CIVIL ENGINEERING, PTS 1-4, 2012, 170-173 : 2316 - +
  • [34] The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine
    Lerch, Markus
    De-Prada-Gil, Mikel
    Molins, Climent
    RENEWABLE ENERGY, 2019, 136 : 1 - 14
  • [35] Hydrodynamic analysis of floating offshore wind turbine
    Chodnekar, Yeshwant Prabhu
    Mandal, Sukomal
    Rao, Balakrishna K.
    8TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS (APAC 2015), 2015, 116 : 4 - 11
  • [36] Integrated Dynamics Response Analysis for IEA 10-MW Spar Floating Offshore Wind Turbine
    Guo, Xiaojiang
    Zhang, Yu
    Yan, Jiatao
    Zhou, Yiming
    Yan, Shu
    Shi, Wei
    Li, Xin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (04)
  • [37] Coupled Dynamic Analysis of a Spar Type Floating Wind Turbine
    Zhang, Liang
    Wu, Haitao
    Ye, Xiaorong
    Jing, Fengmei
    SUSTAINABLE CONSTRUCTION MATERIALS AND COMPUTER ENGINEERING, 2012, 346 : 433 - 439
  • [38] Failure risk analysis of floating offshore wind turbine mooring systems based on the fault tree method
    Zhao C.
    Liu H.
    Jiang Z.
    Su H.
    Qu X.
    Li H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1263 - 1269
  • [39] Simplified load estimation and sizing of suction anchors for spar buoy type floating offshore wind turbines
    Arany, Laszlo
    Bhattacharya, S.
    OCEAN ENGINEERING, 2018, 159 : 348 - 357
  • [40] Experimental study of tendon failure analysis for a TLP floating offshore wind turbine
    Ren, Yajun
    Shi, Wei
    Venugopal, Vengatesan
    Zhang, Lixian
    Li, Xin
    APPLIED ENERGY, 2024, 358