Failure analysis of spar buoy floating offshore wind turbine systems

被引:9
|
作者
Shafiee, Mahmood [1 ]
机构
[1] Univ Kent, Sch Engn, Mech Engn Grp, Canterbury, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
Failure analysis; Floating offshore wind turbine (FOWT); Materials and structures; Mooring system; Fault tree analysis (FTA); Failure mode and effects analysis (FMEA); RELIABILITY-ANALYSIS; RISK-ASSESSMENT;
D O I
10.1007/s41062-022-00982-x
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Floating offshore wind energy is a new form of marine renewable energy which is attracting a great deal of attention worldwide. However, the concepts of floating offshore wind turbines (FOWTs) are still in early stages of development and their failure properties are not yet fully understood. Compared to bottom-fixed wind turbines, FOWTs are subject to more extreme environmental conditions and significant mechanical stresses which may cause a higher degradation rate and shorter mean-time-to-failure for components/structures. To fill the research gap, this paper aims to conduct qualitative and quantitative failure studies on an OC3 spar-type FOWT platform with 3 catenary mooring lines. The failure analyses are performed based on two well-established reliability engineering methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). The most critical FOWT components are prioritized according to their failure likelihood as well as the risk-priority-number. Our results show a good agreement between the two methods with regard to failure criticality rankings. However, some differences between the results are also observed that are attributed to the difference between FTA and FMEA methodologies as the former incorporates the causes of various failure modes into analysis, whereas the latter is mainly adopted for a single random failure analysis. The results obtained from the FMEA study for the FOWT system will also be compared with those reported for bottom-fixed offshore wind turbines and some interesting conclusions are derived.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Failure analysis of spar buoy floating offshore wind turbine systems
    Mahmood Shafiee
    Innovative Infrastructure Solutions, 2023, 8
  • [2] LONG-TERM RELIABILITY ANALYSIS OF A SPAR BUOY-SUPPORTED FLOATING OFFSHORE WIND TURBINE
    Sultania, A.
    Manuel, L.
    OMAE2011: PROCEEDINGS OF THE ASME 30TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, VOL 5: OCEAN SPACE UTILIZATION ; OCEAN RENEWABLE ENERGY, 2011, : 809 - 818
  • [3] NONLINEAR SIMULATION OF A SPAR BUOY FLOATING WIND TURBINE
    Nematbakhsh, Ali
    Olinger, David J.
    Tryggvason, Gretar
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2013, VOL 1C: SYMPOSIA, 2014,
  • [4] An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine
    Hong, Sinpyo
    Lee, Inwon
    Park, Seong Hyeon
    Lee, Cheolmin
    Chun, Ho-Hwan
    Lim, Hee Chang
    INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2015, 7 (03) : 559 - 579
  • [5] Wave Loading and Wind Energy of a Spar Buoy Floating Wind Turbine
    Mazarakos, Thomas P.
    Mavrakos, Spyridon A.
    Soukisian, Takvor H.
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [6] Hydrodynamic Analysis of the WIND-Bos Spar Floating Offshore Wind Turbine
    Hallak, Thiago S.
    Soares, C. Guedes
    Sainz, Oscar
    Hernandez, Sergio
    Arevalo, Alfonso
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (12)
  • [7] Reliability analysis for a spar-supported floating offshore wind turbine
    Sultania, Abhinav
    Manuel, Lance
    WIND ENGINEERING, 2018, 42 (01) : 51 - 65
  • [8] Effects of various freak waves on dynamic responses of a Spar-buoy floating offshore wind turbine
    Li, Yan
    Li, Haoran
    Wang, Bin
    Meng, Hang
    Su, Ouming
    Tang, Yougang
    OCEAN ENGINEERING, 2024, 311
  • [9] Dynamic Analysis of the Mooring System for a Floating Offshore Wind Turbine Spar Platform
    Zhang, D. P.
    Zhu, K. Q.
    Jing, B.
    Yang, R. Z.
    Tang, Z. C.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 796 - 799
  • [10] Nested control co-design of a spar buoy horizontal-axis floating offshore wind turbine
    Bayat, Saeid
    Lee, Yong Hoon
    Allison, James T.
    OCEAN ENGINEERING, 2025, 328