Dynamical Behaviour, Control, and Boundedness of a Fractional-Order Chaotic System

被引:3
|
作者
Ren, Lei [1 ]
Muhsen, Sami [2 ]
Shateyi, Stanford [3 ]
Saberi-Nik, Hassan [4 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[2] Al Mustaqbal Univ, Coll Engn & Technol, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[3] Univ Venda, Dept Math, Private Bag X5050, ZA-0950 Thohoyandou, South Africa
[4] Univ Neyshabur, Dept Math & Stat, Neyshabur 9319774446, Iran
关键词
fractional-order hyperchaotic system; global Mittag-Leffler attractive sets (MLASs); Mittag-Leffler positive invariant sets (MLPISs); chaos control; ULTIMATE BOUND SETS; LORENZ; SYNCHRONIZATION;
D O I
10.3390/fractalfract7070492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the fractional-order chaotic system form of a four-dimensional system with cross-product nonlinearities is introduced. The stability of the equilibrium points of the system and then the feedback control design to achieve this goal have been analyzed. Furthermore, further dynamical behaviors including, phase portraits, bifurcation diagrams, and the largest Lyapunov exponent are presented. Finally, the global Mittag-Leffler attractive sets (MLASs) and Mittag-Leffler positive invariant sets (MLPISs) of the considered fractional order system are presented. Numerical simulations are provided to show the effectiveness of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fractional-Order Control for a Novel Chaotic System Without Equilibrium
    Shao, Shuyi
    Chen, Mou
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (04) : 1000 - 1009
  • [22] Linear control for mixed synchronization of a fractional-order chaotic system
    Li, Chun-Lai
    Han, Qing-Tao
    Xiong, Jian-Bin
    OPTIK, 2016, 127 (15): : 6129 - 6133
  • [23] Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system
    Z. Hammouch
    T. Mekkaoui
    Complex & Intelligent Systems, 2018, 4 : 251 - 260
  • [24] Dynamical Analysis of a Novel Fractional-Order Chaotic System Based on Memcapacitor and Meminductor
    Liu, Xingce
    Mou, Jun
    Wang, Jue
    Banerjee, Santo
    Li, Peng
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [25] Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system
    Hammouch, Z.
    Mekkaoui, T.
    COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (04) : 251 - 260
  • [26] Control of the Fractional-Order Chen Chaotic System via Fractional-Order Scalar Controller and Its Circuit Implementation
    Huang, Qiong
    Dong, Chunyang
    Chen, Qianbin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [27] Tracking Control for Fractional-order Chaotic Systems
    Zhou, Ping
    Ding, Rui
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (11) : 973 - 977
  • [28] Predictive control of fractional-order chaotic systems
    Zheng, Yongai
    Ji, Zhilin
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 307 - 313
  • [29] Impulsive control for fractional-order chaotic systems
    Zhong Qi-Shui
    Bao Jing-Fu
    Yu Yong-Bin
    Liao Xiao-Feng
    CHINESE PHYSICS LETTERS, 2008, 25 (08) : 2812 - 2815
  • [30] Chaotic behavior of a class of discontinuous dynamical systems of fractional-order
    Danca, Marius-F.
    NONLINEAR DYNAMICS, 2010, 60 (04) : 525 - 534