Some homological properties of Borel type ideals

被引:3
|
作者
Herzog, Jurgen [1 ]
Moradi, Somayeh [2 ,5 ]
Rahimbeigi, Masoomeh [3 ]
Zhu, Guangjun [4 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essen, Germany
[2] Ilam Univ, Sch Sci, Dept Math, Ilam, Iran
[3] Univ Kurdistan, Dept Math, Sanandaj, Iran
[4] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
[5] Ilam Univ, Sch Sci, Dept Math, POB 69315-516, Ilam, Iran
关键词
Analytic spread; homological shift ideal; k-Borel ideal; linear quotient; multiplicity; t-spread Veronese ideal; Primary; Secondary; BETTI NUMBERS; RESOLUTIONS; POWERS;
D O I
10.1080/00927872.2022.2137521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study ideals of Borel type, including k-Borel ideals and t-spread Veronese ideals. We determine their free resolutions and their homological shift ideals. The multiplicity and the analytic spread of equigenerated squarefree principal Borel ideals are computed. For the multiplicity, the result is given under an additional assumption which is always satisfied for squarefree principal Borel ideals. These results are used to analyze the behavior of height, multiplicity and analytic spread of the homological shift ideals HSj(I) as functions of j, when I is an equigenerated squarefree Borel ideal.
引用
收藏
页码:1517 / 1531
页数:15
相关论文
共 50 条
  • [21] Principal Borel ideals and Gotzmann ideals
    V. Bonanzinga
    Archiv der Mathematik, 2003, 81 : 385 - 396
  • [22] Principal Borel ideals and Gotzmann ideals
    Bonanzinga, V
    ARCHIV DER MATHEMATIK, 2003, 81 (04) : 385 - 396
  • [23] Some Structural Aspects of the Katětov Order on Borel Ideals
    Osvaldo Guzmán-González
    David Meza-Alcántara
    Order, 2016, 33 : 189 - 194
  • [24] SOME HOMOLOGICAL PROPERTIES OF AMALGAMATION
    Tavasoli, Elham
    MATEMATICKI VESNIK, 2016, 68 (04): : 254 - 258
  • [25] Cofinalities of Borel ideals
    Hrusak, Michael
    Rojas-Rebolledo, Diego
    Zapletal, Jindrich
    MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (1-2) : 31 - 39
  • [26] Applications and homological properties of local rings with decomposable maximal ideals
    Nasseh, Saeed
    Sather-Wagstaff, Sean
    Takahashi, Ryo
    VandeBogert, Keller
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1272 - 1287
  • [27] Some groups of finite homological type
    Leary, IJ
    Saadetoglu, M
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 113 - 120
  • [28] Some Groups of Finite Homological Type
    Ian James Leary
    Müge Saadetoğlu
    Geometriae Dedicata, 2006, 119 : 113 - 120
  • [29] Homological Properties of Ideals Generated by Fold Products of Linear Forms
    Burity, Ricardo
    Tohaneanu, Stefan o.
    Xie, Yu
    MICHIGAN MATHEMATICAL JOURNAL, 2024, 74 (04) : 797 - 824
  • [30] HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS
    AUSLANDER, M
    PLATZECK, MI
    TODOROV, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) : 667 - 692