Dairy Manure Application Effects on Water Percolation, Nutrient Leaching and Rice Yield Under Alternate Wetting and Drying Irrigation

被引:4
|
作者
Amin, M. G. Mostofa [1 ]
Lima, Labiba Akhter [1 ]
Rahman, Atiqur [1 ]
Liu, Jian [2 ]
Jahangir, M. M. R. [3 ]
机构
[1] Bangladesh Agr Univ, Dept Irrigat & Water Management, Mymensingh 2202, Bangladesh
[2] Norwegian Inst Bioecon Res NIBIO, POB 115, N-1431 As, Norway
[3] Bangladesh Agr Univ, Dept Soil Sci, Mymensingh 2202, Bangladesh
关键词
Nitrogen leaching; Phosphorus leaching; Organic fertilizer; Nutrient runoff potential; Rice production; ORGANIC AMENDMENTS; PHYSICAL-PROPERTIES; SOIL; PADDY; PRODUCTIVITY; FERTILIZER; PHOSPHORUS; BANGLADESH; RAINFALL; QUALITY;
D O I
10.1007/s42106-022-00221-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We conducted a study over four rice seasons to assess the effects of dairy manure application on water loss, nutrient leaching, and rice yield compared to chemical fertilization. Water input, soil water storage, water percolation, plant growth, and yield data were recorded under triplicate field lysimeters that received either chemical fertilizers or organic manure. The lysimeters received alternate wetting and drying irrigation (5-cm after 3 days (2018 Aman season), 6 days (2019 Boro and Aman seasons), and 9 days (2020 Boro season) of ponded water disappearance) in addition to rainfall (37.5, 33.1, 40.9, and 47.4 cm, respectively). Leachate and ponded water samples were analyzed for nitrogen (N) species (NH4+ - N and NO3- - N) and available phosphorus (P) content. Manure application increased soil water storage by 1.2-4.4 cm/m but did not affect percolation loss (44-64% of water input) in silt loam soil. The chemical fertilization had significantly higher leaching concentrations of nutrients (NO3- - N at 0.75-3.6 mg/L and P at 0.02-0.15 mg/L) in several leaching events in the last three seasons than the manure treatment (NO3- - N at 0.75-3.2 mg/L and P at 0-0.21 mg/L). Overall, the manure treatment reduced the leaching load of N and available P by 13% and 23.6%, respectively. The N and P concentrations in the topsoil were higher for the manure treatment. Manure application increased rice yield by 15% and water productivity by 0.07 kg/m(3) by augmenting soil water availability during the drying cycles of alternate wetting and drying processes. In addition, recycling manure in soil significantly reduced its environmental pollution compared to other inappropriate disposal methods. However, research needs remain important to adjust manure management options.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [31] Effects of mild alternate wetting and drying irrigation and rice straw application on N2O emissions in rice cultivation
    Wu, Kaikuo
    Li, Wentao
    Wei, Zhanbo
    Dong, Zhi
    Meng, Yue
    Lv, Na
    Zhang, Lili
    SOIL, 2022, 8 (02) : 645 - 654
  • [32] Nitrogen fertiliser and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation
    Santiago-Arenas, Raquel
    Fanshuri, Buyung A.
    Hadi, Sholih N.
    Ullah, Hayat
    Datta, Avishek
    ANNALS OF APPLIED BIOLOGY, 2020, 176 (03) : 314 - 327
  • [33] Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation
    Zhang, Yajun
    Wang, Weilu
    Li, Siyu
    Zhu, Kuanyu
    Hua, Xia
    Harrison, Matthew Tom
    Liu, Ke
    Yang, Jianchang
    Liu, Lijun
    Chen, Yun
    AGRICULTURAL WATER MANAGEMENT, 2023, 281
  • [34] Higher rice yield and lower greenhouse gas emissions with cattle manure amendment is achieved by alternate wetting and drying
    Pramono, Ali
    Adriany, Terry Ayu
    Al Viandari, Nourma
    Susilawati, Helena Lina
    Wihardjaka, Anicetus
    Sutriadi, Mas Teddy
    Yusuf, Wahida Annisa
    Ariani, Miranti
    Wagai, Rota
    Tokida, Takeshi
    Minamikawa, Kazunori
    SOIL SCIENCE AND PLANT NUTRITION, 2024, 70 (02) : 129 - 138
  • [35] Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system
    Sha, Yan
    Chi, Daocai
    Chen, Taotao
    Wang, Shu
    Zhao, Qing
    Li, Yinghao
    Sun, Yidi
    Chen, Ji
    Laerke, Poul Erik
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 838
  • [36] GRAIN YIELD PERFORMANCE OF UPLAND AND LOWLAND RICE VARIETIES UNDER WATER SAVING IRRIGATION THROUGH ALTERNATE WETTING AND DRYING IN SANDY CLAY LOAMS OF SOUTHERN MALAWI
    Shaibu, Y. A.
    Mloza Banda, H. R.
    Makwiza, C. N.
    Malunga, J. Chidanti
    EXPERIMENTAL AGRICULTURE, 2015, 51 (02) : 313 - 326
  • [37] Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield
    Islam, S. M. Mofijul
    Gaihre, Yam Kanta
    Biswas, Jatish Chandra
    Jahan, Md. Sarvvar
    Singh, Upendra
    Adhikary, Sanjoy Kumar
    Satter, M. Abdus
    Saleque, M. A.
    AGRICULTURAL WATER MANAGEMENT, 2018, 196 : 144 - 153
  • [38] Enhancing rice yield, quality, and resource utilisation with slow-release fertiliser in alternate wetting and drying irrigation
    Hua, Keji
    Yang, Peng
    Zhou, Jieyu
    Liao, Wei
    He, Jun
    Zheng, Junlin
    Tang, Chi
    Li, Yuqin
    Zhang, Baolong
    PLANT SOIL AND ENVIRONMENT, 2024, 70 (05) : 253 - 262
  • [39] Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice
    Song, Tao
    Das, Debatosh
    Hu, Qijuan
    Yang, Feng
    Zhang, Jianhua
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 752
  • [40] Assessment of outcrossing potential between cultivated and weedy rice under alternate wetting and drying irrigation management
    Rohila, Jai S.
    Gealy, David R.
    Jackson, Aaron K.
    Ziska, Lewis H.
    AGRONOMY JOURNAL, 2024, 116 (04) : 1903 - 1916