Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs

被引:1
|
作者
Chong, Carsten [1 ]
Dalang, Robert. C. [2 ]
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
关键词
Stochastic heat equation; stochastic partial differential equation; fractional Laplacian; power variations; Riemann zeta function; spectral zeta function; HEAT-EQUATION; DRIVEN; TIME;
D O I
10.3150/22-BEJ1521
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of parabolic stochastic PDEs on bounded domains D c Rd that includes the stochastic heat equation but with a fractional power gamma of the Laplacian. Viewing the solution as a process with values in a scale of fractional Sobolev spaces Hr, with r < gamma - d/2, we study its power variations in Hr along regular partitions of the time-axis. As the mesh size tends to zero, we find a phase transition at r = -d/2: the solutions have a nontrivial quadratic variation when r < -d/2 and a nontrivial pth order variation for p = 2 gamma/(gamma - d/2 - r) > 2 when r > -d/2. More generally, normalized power variations of any order satisfy a genuine law of large numbers in the first case and a degenerate limit theorem in the second case. When r < -d/2, the quadratic variation is given explicitly via an expression that involves the spectral zeta function, which reduces to the Riemann zeta function when d = 1 and D is an interval.
引用
收藏
页码:1792 / 1820
页数:29
相关论文
共 50 条
  • [31] A variational method for a class of parabolic PDEs
    Figalli, Alessio
    Gangbo, Wilfrid
    Yolcu, Tuerkay
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (01) : 207 - 252
  • [32] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11
  • [33] Tempered fractional Sobolev spaces
    Wei, Zhiqiang
    Wang, Yejuan
    Caraballo, Tomas
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 196
  • [34] Fractional Sobolev spaces and topology
    Bousquet, Pierre
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 804 - 827
  • [35] MULTIPLIERS ON FRACTIONAL SOBOLEV SPACES
    STRICHARTZ, RS
    JOURNAL OF MATHEMATICS AND MECHANICS, 1967, 16 (09): : 1031 - +
  • [36] Composition in fractional Sobolev spaces
    Brezis, H
    Mironescu, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (02) : 241 - 246
  • [37] On a class of stochastic semilinear PDEs
    Manca, L
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (02) : 399 - 426
  • [38] PARABOLIC PROBLEMS IN GENERALIZED SOBOLEV SPACES
    Los, Valerii
    Mikhailets, Vladimir
    Murach, Aleksandr
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (10) : 3589 - 3620
  • [39] External optimal control of fractional parabolic PDEs
    Antil, Harbir
    Verma, Deepanshu
    Warma, Mahamadi
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [40] An abstract framework for parabolic PDEs on evolving spaces
    Alphonse, Amal
    Elliott, Charles M.
    Stinner, Bjoern
    PORTUGALIAE MATHEMATICA, 2015, 72 (01) : 1 - 46