Expressive and Intuitive Models for Automated Context Representation Learning in Credit-Card Fraud Detection

被引:0
|
作者
Dastidar, Kanishka Ghosh [1 ]
Siblini, Wissam [2 ]
Granitzer, Michael [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Passau, Germany
[2] Worldine, Dev & Innovat, Lyon, France
关键词
Representation learning; Fraud detection; Deep learning;
D O I
10.1007/978-3-031-25891-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fraud detection literature unanimously shows that the use of a cardholder's transaction history as context improves the classification of the current transaction. Context representation is usually performed through either of two approaches. The first, manual feature engineering, is expensive, restricted, and hard to maintain as it relies on human expertise. The second, automatic context representation, removes the human dependency by learning new features directly on the fraud data with an end-to-end neural network. The LSTM and the more recent Neural Feature Aggregate Generator (NAG) are examples of such an approach. The architecture of the NAG is inspired by manual feature aggregates and addresses several of their limitations, primarily because it is automatic. However, it still has several drawbacks that we aim to address in this paper. In particular, we propose to extend the NAG in the following two main manners: (1) By expanding its expressiveness to model a larger panel of functions and constraints. This includes the possibility to model time constraints and additional aggregation functions. (2) By better aligning its architecture with the domain expert intuition on feature aggregates. We evaluate the different extensions of the NAG through a series of experiments on a real-world credit-card dataset consisting of over 60 million transactions. The extensions show comparable performance to the NAG on the fraud-detection task, while providing additional benefits in terms of model size and interpretability.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 50 条
  • [41] Combining unsupervised and supervised learning in credit card fraud detection
    Carcillo, Fabrizio
    Le Borgne, Yann-Ael
    Caelen, Olivier
    Kessaci, Yacine
    Oble, Frederic
    Bontempi, Gianluca
    INFORMATION SCIENCES, 2021, 557 : 317 - 331
  • [42] Credit Card Fraud Detection System
    Filippov, V.
    Mukhanov, L.
    Shchukin, B.
    PROCEEDINGS OF THE 2008 7TH IEEE INTERNATIONAL CONFERENCE ON CYBERNETIC INTELLIGENT SYSTEMS, 2008, : 79 - +
  • [43] Deep learning-based credit card fraud detection in federated learning
    Reddy, Vadisena Venkata Krishna
    Reddy, Radha Vijaya Kumar
    Munaga, Masthan Siva Krishna
    Karnam, Balaji
    Maddila, Suresh Kumar
    Kolli, Chandra Sekhar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [44] DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble
    Aghware, Fidelis Obukohwo
    Yoro, Rume Elizabeth
    Ejeh, Patrick Ogholoruwami
    Odiakaose, Christopher Chukwufunaya
    Emordi, Frances Uche
    Ojugo, Arnold Adimabua
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 94 - 100
  • [45] Comparative Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Singh, Kiran Jot
    Thakur, Khushal
    Kapoor, Divneet Singh
    Sharma, Anshul
    Bajpai, Sakshi
    Sirawag, Neeraj
    Mehta, Riya
    Chaudhary, Chitransh
    Singh, Utkarsh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 69 - 78
  • [46] Autonomous credit card fraud detection using machine learning approach
    Roseline, J. Femila
    Naidu, Gbsr
    Pandi, V. Samuthira
    Rajasree, S. Alamelu Alias
    Mageswari, Dr N.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [47] A soft voting ensemble learning approach for credit card fraud detection
    Mim, Mimusa Azim
    Majadi, Nazia
    Mazumder, Peal
    HELIYON, 2024, 10 (03)
  • [48] Supervised Machine Learning Algorithms for Credit Card Fraud Detection: A Comparison
    Khatri, Samidha
    Arora, Aishwarya
    Agrawal, Arun Prakash
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 680 - 683
  • [49] Credit card fraud detection using a deep learning multistage model
    Georgios Zioviris
    Kostas Kolomvatsos
    George Stamoulis
    The Journal of Supercomputing, 2022, 78 : 14571 - 14596
  • [50] Enhancing Credit Card Security: Exploiting Machine Learning for Fraud Detection
    Mahure, Sonali Jagdish
    Reddy, Vennala M.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 171 - 177