Synthesis of carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron (CMC-S-nZVI) for enhanced reduction of nitrobenzene

被引:10
|
作者
Gao, Feilong [1 ]
Zhang, Mingyi [1 ]
Zhang, Wenzhu [1 ]
Ahmad, Shakeel [1 ]
Wang, Lan [1 ]
Tang, Jingchun [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin Engn Ctr Environm Diag & Contaminat Remedi, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin 300350, Peoples R China
关键词
S-nZVI; Carboxymethyl cellulose; Stabilizer; Nitrobenzene; Reusability; ZEROVALENT IRON; BIMETALLIC NANOPARTICLES; REACTIVITY ENHANCEMENT; TCE DECHLORINATION; WATER-TREATMENT; GROUNDWATER; REMOVAL; TRICHLOROETHENE; SOIL; TRANSFORMATION;
D O I
10.1016/j.seppur.2023.123704
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Sulfidated nanoscale zero-valent iron (S-nZVI) had been widely applied for in situ groundwater remediation, but it still suffered from aggregation, surface passivation, and low reactivity in the reaction system. Herein, sodium carboxymethyl cellulose (CMC) was used as a stabilizer, and the effects of the CMC on the physicochemical properties, reactivity, and reusability of S-nZVI on nitrobenzene (NB) degradation were investigated. The characterizations revealed that the CMC improved the degree of sulfidation and accumulated more FexSy phase on the particle surface. The NB degradation rate by Fe/CMC mass ratio of 0.25 was the highest, and its pseudo-first order degradation rate constant (0.203 min-1) was nearly 15 times higher than that of S-nZVI (0.014 min-1), mainly because CMC significantly inhibited the surface oxidation of S-nZVI, improved the hydropho-bicity, and reduced the electron transfer resistance compared to S-nZVI. Meanwhile, CMC-S-nZVI exhibited su-perior reusability than S-nZVI on NB degradation. The product distribution indicated that almost all NB was reduced to aniline (AN) without accumulation of intermediate after reaction. Besides, the effects of initial NB concentration, initial pH, S/Fe molar ratio, and particles dosage on NB degradation by CMC-S-nZVI were also investigated systematically. These results suggested that CMC-S-nZVI provided better reactivity and reusability than S-nZVI, which can guide the optimal design of robust CMC-S-nZVI and display great potential for in situ remediation application.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media
    Gong, Li
    Shi, Shasha
    Lv, Neng
    Xu, Wenqiang
    Ye, Ziwei
    Gao, Bin
    O'Carroll, Denis M.
    He, Feng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 718
  • [22] The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur
    Liang, Li
    Li, Xiaoqin
    Guo, Yiqing
    Lin, Zhang
    Su, Xintai
    Liu, Bo
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 404
  • [23] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [24] Sequestration of metal cations with nanoscale zero-valent iron (nZVI)
    Li, Xiao-Qin
    Zhang, Weixian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [25] Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(VI) removal
    Wang, Zhongsen
    Qiu, Lijun
    Huang, Yunhua
    Zhang, Meng
    Cai, Xi
    Wang, Fanyu
    Lin, Yang
    Shi, Yanbiao
    Liu, Xiao
    CHINESE CHEMICAL LETTERS, 2024, 35 (07)
  • [26] Removal of cadmium in aqueous solution by sulfidated nanoscale Zero-Valent Iron
    Yang W.
    Qin R.
    Qin R.
    Zhang L.
    Qiu M.
    Nature Environment and Pollution Technology, 2020, 19 (02) : 755 - 760
  • [27] Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron
    He, Feng
    Li, Zhenjie
    Shi, Shasha
    Xu, Wenqiang
    Sheng, Hanzhen
    Gu, Yawei
    Jiang, Yonghai
    Xi, Beidou
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (15) : 8627 - 8637
  • [28] Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes
    Liu, Jing
    Liu, Airong
    Wang, Wei
    Li, Ruofan
    Zhang, Wei-xian
    CHEMOSPHERE, 2019, 237
  • [29] The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron
    Dong, Haoran
    Xie, Yankai
    Zeng, Guangming
    Tang, Lin
    Liang, Jie
    He, Qi
    Zhao, Feng
    Zeng, Yalan
    Wu, Yanan
    CHEMOSPHERE, 2016, 144 : 1682 - 1689
  • [30] Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose
    Mosaferi, Mohammad
    Nemati, Sepideh
    Khataee, Alireza
    Nasseri, Simin
    Hashemi, Ahmad Asl
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2014, 12