High-Efficiency CsPbI2Br Perovskite Solar Cells with over 83% Fill Factor by Synergistic Effects of a Multifunctional Additive

被引:13
|
作者
Hu, Yanqiang [1 ,2 ]
Cai, Lijuan [1 ]
Xu, Zong [1 ]
Wang, Zhi [1 ]
Zhou, Yifan [1 ]
Sun, Guangping [1 ]
Sun, Tongming [1 ]
Qi, Yabing [3 ]
Zhang, Shufang [1 ]
Tang, Yanfeng [1 ]
机构
[1] Nantong Univ, Sch Chem & Chem Engn, Nantong 226001, Jiangsu, Peoples R China
[2] Ludong Univ, Sch Phys & Photoelect Engn, Yantai 264025, Shandong, Peoples R China
[3] Okinawa Inst Sci & Technol Grad Univ OIST, Energy Mat & Surface Sci Unit EMSSU, Onna, Okinawa 9040495, Japan
基金
中国国家自然科学基金;
关键词
CH3NH3PBI3; PEROVSKITE; THERMAL-DEGRADATION; HALIDE PEROVSKITES; CATIONS;
D O I
10.1021/acs.inorgchem.2c04316
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
All-inorganic CsPbI2Br with outstanding thermal stability and excellent photoelectric properties is considered as a promising candidate for photovoltaic applications. However, the efficiency of CsPbI2Br perovskite solar cells (PSCs) is still much lower than that of their organic-inorganic hybrid counterparts or CsPbI3-based devices. Herein, we obtained an optimized CsPbI2Br PSC (0.09 cm2) with a champion efficiency of 17.38% and a record fill factor of 83.6% by introducing potassium anthraquinone-1,8disulfonate (DAD) in the precursor solution. The synergistic effect between the electronegative functional groups and K+ ions in the DAD structure can not only effectively regulate the crystallization growth process to improve the crystalline quality and stability of photo-active CsPbI2Br but also optimize the energy level alignment and passivate the defects to improve the carrier transport properties. The efficiency of the corresponding large-area device (5 cm x 5 cm with an active area of 19.25 cm2) reached 13.20%. Moreover, the optimized CsPbI2Br PSC exhibited negligible hysteresis and enhanced long-term storage stability as well as thermal stability. Our method produces more stable photo-active CsPbI2Br with excellent photoelectric properties for industrial applications or perovskite/silicon tandem cells.
引用
下载
收藏
页码:5408 / 5414
页数:7
相关论文
共 50 条
  • [21] Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%
    Yan, Lei
    Xue, Qifan
    Liu, Meiyue
    Zhu, Zonglong
    Tian, Jingjing
    Li, Zhenchao
    Chen, Zhen
    Chen, Ziming
    Yan, He
    Yip, Hin-Lap
    Cao, Yong
    ADVANCED MATERIALS, 2018, 30 (33)
  • [22] Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%
    Ozturk, Teoman
    Akman, Erdi
    Shalan, Ahmed Esmail
    Akin, Seckin
    NANO ENERGY, 2021, 87
  • [23] Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells
    Fu, Shiqiang
    Wang, Jiahao
    Liu, Xiaohui
    Yuan, Haobo
    Xu, Zuxiong
    Long, Yongjin
    Zhang, Jing
    Huang, Like
    Hu, Ziyang
    Zhu, Yuejin
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [24] Progress and Perspective on Inorganic CsPbI2Br Perovskite Solar Cells
    Song, Jing
    Xie, Haibing
    Lim, Eng Liang
    Hagfeldt, Anders
    Bi, Dongqin
    ADVANCED ENERGY MATERIALS, 2022, 12 (40)
  • [25] Precursor Engineering for Ambient-Compatible Antisolvent-Free Fabrication of High-Efficiency CsPbI2Br Perovskite Solar Cells
    Duan, Chenyang
    Cui, Jian
    Zhang, Miaomiao
    Han, Yu
    Yang, Shaomin
    Zhao, Huan
    Bian, Hongtao
    Yao, Jianxi
    Zhao, Kui
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2020, 10 (22)
  • [26] Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells
    Zhang, Fu
    Ma, Zhu
    Hu, Taotao
    Liu, Rui
    Wu, Qiaofeng
    Yu, Yue
    Zhang, Hua
    Xiao, Zheng
    Zhang, Meng
    Zhang, Wenfeng
    Chen, Xin
    Yu, Hua
    Journal of Materials Science and Technology, 2021, 66 : 150 - 156
  • [27] Intermediate-Adduct-Assisted Growth of Stable CsPbI2Br Inorganic Perovskite Films for High-Efficiency Semitransparent Solar Cells
    Wang, Min
    Cao, Fengren
    Wang, Meng
    Deng, Kaimo
    Li, Liang
    ADVANCED MATERIALS, 2021, 33 (10)
  • [28] Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells
    Fu Zhang
    Zhu Ma
    Taotao Hu
    Rui Liu
    Qiaofeng Wu
    Yu Yue
    Hua Zhang
    Zheng Xiao
    Meng Zhang
    Wenfeng Zhang
    Xin Chen
    Hua Yu
    Journal of Materials Science & Technology, 2021, 66 (07) : 150 - 156
  • [29] Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells
    Zhang, Fu
    Ma, Zhu
    Hu, Taotao
    Liu, Rui
    Wu, Qiaofeng
    Yu, Yue
    Zhang, Hua
    Xiao, Zheng
    Zhang, Meng
    Zhang, Wenfeng
    Chen, Xin
    Yu, Hua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 66 : 150 - 156
  • [30] Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective
    Zeng, Qingsen
    Zhang, Xiaoyu
    Liu, Chongming
    Feng, Tanglue
    Chen, Zhaolai
    Zhang, Wei
    Zheng, Weitao
    Zhang, Hao
    Yang, Bai
    SOLAR RRL, 2019, 3 (01)