Physics-informed deep learning for multi-species membrane separations

被引:23
|
作者
Rehman, Danyal [1 ,2 ]
Lienhard, John H. [1 ]
机构
[1] MIT, Rohsenow Kendall Heat Transfer Lab, Cambridge, MA 02139 USA
[2] MIT, Ctr Computat Sci & Engn, Cambridge, MA 02139 USA
关键词
Ion selectivity; Membrane separations; Physics-informed machine learning; Scientific machine learning; Deep learning; NANOFILTRATION MEMBRANES; NEURAL-NETWORKS; WATER-TREATMENT; DESALINATION; PERFORMANCE; SIMULATION; DIFFUSION; REJECTION; TRANSPORT; RECOVERY;
D O I
10.1016/j.cej.2024.149806
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conventional continuum models for ion transport across polyamide membranes require solving partial differential equations (PDEs). These models typically introduce a host of assumptions and simplifications to improve the computational tractability of existing solvers. As a consequence of these constraints, conventional models struggle to generalize predictive performance to new unseen conditions. Deep learning has recently shown promise in alleviating many of these concerns, making it a promising avenue for surrogate models that can replace conventional PDE-based approaches. In this work, we develop a physics-informed deep learning model to predict ion transport across diverse membrane types. The proposed architecture leverages neural differential equations in conjunction with classical closure models as inductive biases directly encoded into the neural framework. The neural methods are pre-trained on simulated data from continuum models and fine-tuned on independent experiments to learn multi-ionic rejection behaviour. We also harness the attention mechanism, commonly observed in language modelling, to learn and infer key paired transport relationships. Gaussian noise augmentations from experimental uncertainty estimates are also introduced into the measured data to improve robustness and generalization. We study the neural framework's performance relative to conventional PDE-based methods, and also compare the use of hard/soft inductive bias constraints on prediction accuracy. Lastly, we compare our approach to other competitive deep learning architectures and illustrate strong agreement with experimental measurements across all studied datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Physics-informed deep learning model in wind turbine response prediction
    Li, Xuan
    Zhang, Wei
    RENEWABLE ENERGY, 2022, 185 : 932 - 944
  • [32] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [33] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [34] A PHYSICS-INFORMED DEEP LEARNING APPROACH FOR HDGT COMPRESSOR PERFORMANCE SIMULATION
    Wei, Manman
    Jiang, Xiaomo
    Liu, Yiyang
    Ge, Xin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [35] Physics-Informed deep learning to predict flow fields in cyclone separators
    Queiroz, L. H.
    Santos, F. P.
    Oliveira, J. P.
    Souza, M. B.
    DIGITAL CHEMICAL ENGINEERING, 2021, 1
  • [36] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [37] Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (08)
  • [38] Physics-informed deep learning for modelling particle aggregation and breakage processes
    Chen, Xizhong
    Wang, Li Ge
    Meng, Fanlin
    Luo, Zheng-Hong
    Chemical Engineering Journal, 2021, 426
  • [39] Physics-informed deep learning for structural dynamics under moving load
    Liang, Ruihua
    Liu, Weifeng
    Fu, Yuguang
    Ma, Meng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 284
  • [40] Physics-informed deep learning: A promising technique for system reliability assessment
    Zhou, Taotao
    Droguett, Enrique Lopez
    Mosleh, Ali
    APPLIED SOFT COMPUTING, 2022, 126