A Surrogate-Assisted Expensive Constrained Multi-Objective Optimization Algorithm Based on Adaptive Switching of Acquisition Functions

被引:3
|
作者
Wu, Haofeng [1 ]
Chen, Qingda [1 ]
Jin, Yaochu [1 ,2 ]
Ding, Jinliang [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Westlake Univ, Sch Engn, Hangzhou 310030, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
关键词
Optimization; Iron; Evolutionary computation; Computational modeling; Statistics; Sociology; Prediction algorithms; Evolutionary optimization; surrogate models; acquisition function; expensive constrained multi-objective optimization; NONDOMINATED SORTING APPROACH; EVOLUTIONARY ALGORITHM; FRAMEWORK;
D O I
10.1109/TETCI.2024.3359517
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expensive constrained multi-objective optimization problems (ECMOPs) present a significant challenge to surrogate-assisted evolutionary algorithms (SAEAs) in effectively balancing optimization of the objectives and satisfaction of the constraints with complex landscapes, leading to low feasibility, poor convergence and insufficient diversity. To address these issues, we design a novel algorithm for the automatic selection of two acquisition functions, thereby taking advantage of the benefits of both using and ignoring constraints. Specifically, a multi-objective acquisition function that ignores constraints is proposed to search for problems whose unconstrained Pareto-optimal front (UPF) and constrained Pareto-optimal front (CPF) are similar. In addition, another constrained multi-objective acquisition function is introduced to search for problems whose CPF is far from the UPF. Following the optimization of the two acquisition functions, two model management strategies are proposed to select promising solutions for sampling new solutions and updating the surrogates. Any multi-objective evolutionary algorithm (MOEA) for solving non-constrained and constrained multiobjective optimization problems can be integrated into our algorithm. The performance of the proposed algorithm is evaluated on five suites of test problems, one benchmark-suite of real-world constrained multi-objective optimization problems (RWCMOPs) and a real-world optimization problem. Comparative results show that the proposed algorithm is competitive against state-of-the-art constrained SAEAs.
引用
收藏
页码:2050 / 2064
页数:15
相关论文
共 50 条
  • [41] Surrogate-Assisted Multi-objective Optimization for Compiler Optimization Sequence Selection
    Gao, Guojun
    Qiao, Lei
    Liu, Dong
    Chen, Shifei
    Jiang, He
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT II, 2022, 13399 : 382 - 395
  • [42] Adaptive surrogate-assisted multi-objective evolutionary algorithm using an efficient infill technique
    Wu, Mengtian
    Wang, Lingling
    Xu, Jin
    Hu, Pengjie
    Xu, Pengcheng
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [43] Surrogate-assisted multi-objective optimization of compact microwave couplers
    Kurgan, Piotr
    Koziel, Slawomir
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (15) : 2067 - 2075
  • [44] Multi-Objective Surrogate-Assisted Stochastic Optimization for Engine Calibration
    Pal, Anuj
    Wang, Yan
    Zhu, Ling
    Zhu, Guoming G.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (10):
  • [45] Deep reinforcement learning assisted surrogate model management for expensive constrained multi-objective optimization
    Shao, Shuai
    Tian, Ye
    Zhang, Yajie
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92
  • [46] Surrogate-assisted Multi-objective Combinatorial Optimization based on Decomposition and Walsh Basis
    Pruvost, Geoffrey
    Derbel, Bilel
    Liefooghe, Arnaud
    Verel, Sebastien
    Zhang, Qingfu
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 542 - 550
  • [47] A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design
    Dong-Kuk Lim
    Dong-Kyun Woo
    Journal of Electrical Engineering & Technology, 2019, 14 : 1247 - 1254
  • [48] A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization
    Zhao, Mengjie
    Zhang, Kai
    Chen, Guodong
    Zhao, Xinggang
    Yao, Chuanjin
    Sun, Hai
    Huang, Zhaoqin
    Yao, Jun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 192
  • [49] Surrogate-Assisted Memetic Algorithm with Adaptive Patience Criterion for Computationally Expensive Optimization
    Zhang, Yunwei
    Gong, Chunlin
    Li, Chunna
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [50] Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm
    Liu, Yan
    Collette, Matthew
    APPLIED SOFT COMPUTING, 2014, 24 : 482 - 493