Dense-PSP-UNet: A neural network for fast inference liver ultrasound segmentation

被引:63
|
作者
Ansari, Mohammed Yusuf [1 ,2 ]
Yang, Yin [3 ]
Meher, Pramod Kumar [4 ]
Dakua, Sarada Prasad [1 ]
机构
[1] Hamad Med Corp, Doha, Qatar
[2] Texas A&M Univ, College Stn, TX USA
[3] Hamad Bin Khalifa Univ, Doha, Qatar
[4] CV Raman Global Univ, Bhubaneswar, India
关键词
Liver segmentation; Ultrasound segmentation; Multiscale features; Real-time segmentation; REAL-TIME; IMAGES;
D O I
10.1016/j.compbiomed.2022.106478
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liver Ultrasound (US) or sonography is popularly used because of its real-time output, low-cost, ease-of-use, portability, and non-invasive nature. Segmentation of real-time liver US is essential for diagnosing and analyzing liver conditions (e.g., hepatocellular carcinoma (HCC)), assisting the surgeons/radiologists in therapeutic procedures. In this paper, we propose a method using a modified Pyramid Scene Parsing (PSP) module in tuned neural network backbones to achieve real-time segmentation without compromising the segmentation accuracy. Considering widespread noise in US data and its impact on outcomes, we study the impact of pre-processing and the influence of loss functions on segmentation performance. We have tested our method after annotating a publicly available US dataset containing 2400 images of 8 healthy volunteers (link to the annotated dataset is provided); the results show that the Dense-PSP-UNet model achieves a high Dice coefficient of 0.913 +/- 0.024 while delivering a real-time performance of 37 frames per second (FPS).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A 3D Implementation of Convolutional Neural Network for Fast Inference
    Miniskar, Narasinga Rao
    Vanna-iampikul, Pruek
    Young, Aaron
    Lim, Sung Kyu
    Liu, Frank
    Yoo, Jieun
    Mills, Corrinne
    Nhan Tran
    Fahim, Farah
    Vetter, Jeffrey S.
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [42] Swift: Fast Secure Neural Network Inference With Fully Homomorphic Encryption
    Fu, Yu
    Tong, Yu
    Ning, Yijing
    Xu, Tianshi
    Li, Meng
    Lin, Jingqiang
    Feng, Dengguo
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2793 - 2806
  • [43] Geo-UNet: A Geometrically Constrained Neural Framework for Clinical-Grade Lumen Segmentation in Intravascular Ultrasound
    Chen, Yiming
    D'Souza, Niharika S.
    Mandepally, Akshith
    Henninger, Patrick
    Kashyap, Satyananda
    Karani, Neerav
    Dey, Neel
    Zachary, Marcos
    Rizq, Raed
    Chouinard, Paul
    Golland, Polina
    Syeda-Mahmood, Tanveer F.
    MACHINE LEARNING IN MEDICAL IMAGING, PT I, MLMI 2024, 2025, 15241 : 300 - 309
  • [44] Brain tumor segmentation via C-dense convolutional neural network
    Wang, Ye
    Peng, Jialin
    Jia, Zhongdao
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2021, 10 (02) : 147 - 156
  • [45] Enhanced seismic data segmentation using an assembled scSE-Res-UNet deep neural network
    Wang, Zhiguo
    Wang, Qiannan
    Zhang, Yijie
    Chen, Yumin
    Zhang, Xiaoyun
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 231
  • [46] Brain tumor segmentation via C-dense convolutional neural network
    Ye Wang
    Jialin Peng
    Zhongdao Jia
    Progress in Artificial Intelligence, 2021, 10 : 147 - 156
  • [47] CSC-Unet: A Novel Convolutional Sparse Coding Strategy Based Neural Network for Semantic Segmentation
    Tang, Haitong
    He, Shuang
    Yang, Mengduo
    Lu, Xia
    Yu, Qin
    Liu, Kaiyue
    Yan, Hongjie
    Wang, Nizhuan
    IEEE ACCESS, 2024, 12 : 35844 - 35854
  • [48] A Lung Dense Deep Convolution Neural Network for Robust Lung Parenchyma Segmentation
    Chen, Ying
    Wang, Yerong
    Hu, Fei
    Wang, Ding
    IEEE ACCESS, 2020, 8 (08): : 93527 - 93547
  • [49] SK-Unet plus plus : An improved Unet plus plus network with adaptive receptive fields for automatic segmentation of ultrasound thyroid nodule images
    Dai, Hong
    Xie, Wufei
    Xia, E.
    MEDICAL PHYSICS, 2024, 51 (03) : 1798 - 1811
  • [50] Brain Tumor Segmentation Using Neural Ordinary Differential Equations with UNet-Context Encoding Network
    Sadique, M. S.
    Rahman, M. M.
    Farzana, W.
    Temtam, A.
    Iftekharuddin, K. M.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 205 - 215