Quantifying the impact of unmeasured confounding in observational studies with the E value

被引:8
|
作者
Gaster, Tobias [1 ]
Eggertsen, Christine Marie [1 ]
Stovring, Henrik [2 ,3 ]
Ehrenstein, Vera [4 ,5 ]
Petersen, Irene [4 ,5 ,6 ]
机构
[1] Aarhus Univ, Aarhus, Denmark
[2] Steno Diabet Ctr Aarhus, Aarhus, Denmark
[3] Univ Southern Denmark, Clin Pharmacol Pharm & Environm Med, Odense, Denmark
[4] Aarhus Univ, Dept Clin Epidemiol, DK-8000 Aarhus, Denmark
[5] Aarhus Univ Hosp, Aarhus, Denmark
[6] UCL, Dept Primary Care & Populat Hlth, London, England
来源
BMJ MEDICINE | 2023年 / 2卷 / 01期
关键词
Pregnancy complications; Epidemiology; Obstetrics; SEROTONIN REUPTAKE INHIBITORS; SENSITIVITY-ANALYSIS; MISCARRIAGE; PREGNANCY; RISK;
D O I
10.1136/bmjmed-2022-000366
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The E value method deals with unmeasured confounding, a key source of bias in observational studies. The E value method is described and its use is shown in a worked example of a meta-analysis examining the association between the use of antidepressants in pregnancy and the risk of miscarriage.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Confounding in publications of observational intervention studies
    Groenwold, Rolf H. H.
    Hoes, Arno W.
    Hak, Eelko
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2007, 22 (07) : 413 - 415
  • [42] Confounding factors in observational and intervention studies
    Feldman, RA
    ITALIAN JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 1998, 30 : S248 - S253
  • [43] Confounding in publications of observational intervention studies
    Rolf H. H. Groenwold
    Arno W. Hoes
    Eelko Hak
    European Journal of Epidemiology, 2007, 22 : 413 - 415
  • [44] Methods to account for confounding in observational studies
    Smith, C. J.
    PHLEBOLOGY, 2011, 26 (03) : 125 - 127
  • [45] A simulation-based bias analysis to assess the impact of unmeasured confounding when designing nonrandomized database studies
    Desai, Rishi J.
    Bradley, Marie C.
    Lee, Hana
    Eworuke, Efe
    Weberpals, Janick
    Wyss, Richard
    Schneeweiss, Sebastian
    Ball, Robert
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2024,
  • [46] An approach to quantifying the potential importance of residual confounding in systematic reviews of observational studies: A GRADE concept paper
    Verbeek, Jos H.
    Whaley, Paul
    Morgan, Rebecca L.
    Taylor, Kyla W.
    Rooney, Andrew A.
    Schwingshackl, Lukas
    Hoving, Jan L.
    Katikireddi, S. Vittal
    Shea, Beverley
    Mustafa, Reem A.
    Murad, M. Hassan
    Schunemann, Holger J.
    ENVIRONMENT INTERNATIONAL, 2021, 157
  • [47] Meta-Analysis of Observational Studies with Unmeasured Confounders
    McCandless, Lawrence C.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (02):
  • [48] Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables
    Rosenbaum, Cornelius
    Yu, Qingzhao
    Buzhardt, Sarah
    Sutton, Elizabeth
    Chapple, Andrew G.
    PHARMACEUTICAL STATISTICS, 2023, 22 (06) : 995 - 1015
  • [49] Assessing techniques for quantifying the impact of bias due to an unmeasured confounder
    Barberio, Julie
    Ahern, Thomas P.
    MacLehose, Richard
    Collin, Lindsay J.
    Cronin-Fenton, Deirdre
    Damkier, Per
    Sorensen, Henrik Toft
    Lash, Timothy L.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 381 - 382
  • [50] Using negative controls to adjust for unmeasured confounding bias in time series studies
    Hu, Jie Kate
    Tchetgen Tchetgen, Eric J.
    Dominici, Francesca
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):