Fault detection for LTI systems using data-driven dissipativity analysis

被引:1
|
作者
Rosa, Tabitha E. [1 ]
Carvalho, Leonardo de Paula [2 ]
Gleizer, Gabriel A. [3 ]
Jayawardhana, Bayu [1 ]
机构
[1] Univ Groningen, Engn & TEchnol Inst Groningen ENTEG, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Sao Paulo, Dept Engn Telecomunicacoes & Controle, Dept Farm, Ave Prof Luciano Gualberto, travessa 3, 58, BR-05508900 Sao Paulo, SP, Brazil
[3] Technol Univ Delft, Delft Ctr Syst & Control, Mekelweg 2, NL-2628 CD Delft, Netherlands
基金
荷兰研究理事会;
关键词
Fault detection; Data-driven; Dissipativity; LTI systems; Model-free;
D O I
10.1016/j.mechatronics.2023.103111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the physical exchange of energy and its dissipation in electro-mechanical systems, we propose a new fault detection method based on data-driven dissipativity analysis. We first identify a dissipativity inequality using one or multiple shots of data obtained from a linear time-invariant system. This dissipativity inequality's storage and supply rate functions assume generic quadratic difference forms encompassing all LTI systems. By analysing the norm of the identified dissipative inequality as the residual function, we can detect the occurrence of faults in real-time without the need to model each fault the system is subjected to. Through academic examples, we demonstrate how we can identify supply rate and storage functions from persistently exciting data shots. We present a practical example of detecting faults on a two-degree-of-freedom planar manipulator with zero missed fault detection rate, which is compared to a standard PCA-based fault detection algorithm.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Data-driven approaches for impending fault detection of industrial systems: a review
    Patil, Amitkumar
    Soni, Gunjan
    Prakash, Anuj
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (04) : 1326 - 1344
  • [22] A review of data-driven fault detection and diagnostics for building HVAC systems
    Chen, Zhelun
    O'Neill, Zheng
    Wen, Jin
    Pradhan, Ojas
    Yang, Tao
    Lu, Xing
    Lin, Guanjing
    Miyata, Shohei
    Lee, Seungjae
    Shen, Chou
    Chiosa, Roberto
    Piscitelli, Marco Savino
    Capozzoli, Alfonso
    Hengel, Franz
    Kuehrer, Alexander
    Pritoni, Marco
    Liu, Wei
    Clauss, John
    Chen, Yimin
    Herr, Terry
    [J]. APPLIED ENERGY, 2023, 339
  • [23] A Data-driven Approach for Fault Detection in the Alternator Unit of Automotive Systems
    Vijayan, Arunkumar
    Tahoori, Mehdi B.
    Kintzli, Ewald
    Lohmann, Timm
    Handl, Juergen Hans
    [J]. 2022 IEEE EUROPEAN TEST SYMPOSIUM (ETS 2022), 2022,
  • [24] Machine learning and data-driven fault detection for ship systems operations
    Cheliotis, Michail
    Lazakis, Iraklis
    Theotokatos, Gerasimos
    [J]. OCEAN ENGINEERING, 2020, 216
  • [25] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    [J]. ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [26] Data-driven fault detection for chemical processes using autoencoder with data augmentation
    Hodong Lee
    Changsoo Kim
    Dong Hwi Jeong
    Jong Min Lee
    [J]. Korean Journal of Chemical Engineering, 2021, 38 : 2406 - 2422
  • [27] Data-driven fault detection for chemical processes using autoencoder with data augmentation
    Lee, Hodong
    Kim, Changsoo
    Jeong, Dong Hwi
    Lee, Jong Min
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (12) : 2406 - 2422
  • [28] Data-Driven Fault Detection of Electrical Machine
    Xu, Zhao
    Hu, Jinwen
    Hu, Changhua
    Nadarajan, Sivakumar
    Goh, Chi-keong
    Gupta, Amit
    [J]. 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 515 - 520
  • [29] Data-driven, robust output regulation in finite time for LTI systems
    de Carolis, Giovanni
    Galeani, Sergio
    Sassano, Mario
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (18) : 5997 - 6015
  • [30] Fault Detection and Diagnosis for Wind Turbines using Data-Driven Approach
    Francisco Manrique, Ruben
    Andres Giraldo, Fabian
    Sofrony Esmeral, Jorge
    [J]. 2012 7TH COLOMBIAN COMPUTING CONGRESS (CCC), 2012,