Mobile Devices Strategies in Blockchain-Based Federated Learning: A Dynamic Game Perspective

被引:20
|
作者
Fan, Sizheng [1 ,2 ]
Zhang, Hongbo [1 ,2 ]
Wang, Zehua [3 ]
Cai, Wei [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518172, Guangdong, Peoples R China
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 2G9, Canada
基金
中国国家自然科学基金;
关键词
Mobile handsets; Blockchains; Training; Task analysis; Smart contracts; Privacy; Games; Blockchain; dynamic game; federated learning; nash equilibrium; FRAMEWORK; PRIVATE; DESIGN;
D O I
10.1109/TNSE.2022.3163791
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Leveraging various mobile devices to train the shared model collaboratively, federated learning (FL) can improve the privacy and security of 6G communication. To economically encourage the participation of heterogeneous mobile devices, an incentive mechanism and a fair trading platform are needed. In this paper, we implement a blockchain-based FL system and propose an incentive mechanism to establish a decentralized and transparent trading platform. Moreover, to better understand the mobile devices' behaviors, we provide economic analysis for this market. Specifically, we propose two strategy models for mobile devices, namely the discrete strategy model (DSM) and the continuous strategy model (CSM). Also, we formulate the interactions among the non-cooperative mobile devices as a dynamic game, where they adjust their strategies iteratively to maximize the individual payoff based on others' previous strategies. We further prove the existence in Nash equilibrium (NE) of two different models and propose algorithms to achieve them. Simulation results demonstrate the convergence of the proposed algorithms and show that the CSM can effectively increase the mobile devices' payoffs to 128.1 percent at most compared with DSM.
引用
收藏
页码:1376 / 1388
页数:13
相关论文
共 50 条
  • [31] Incentive Mechanism of Blockchain-Based Reverse Auction for Federated Learning
    Cui, Bo
    Dang, Li
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1043 - 1048
  • [32] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [33] BAFL: An Efficient Blockchain-Based Asynchronous Federated Learning Framework
    Xu, Chenhao
    Qu, Youyang
    Eklund, Peter W.
    Xiang, Yong
    Gao, Longxiang
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [34] BCAFL: A Blockchain-Based Framework for Asynchronous Federated Learning Protection
    Yun, Jian
    Lu, Yusheng
    Liu, Xinyu
    ELECTRONICS, 2023, 12 (20)
  • [35] A Survey on Blockchain-Based Federated Learning: Categorization, Application and Analysis
    Tang, Yuming
    Zhang, Yitian
    Niu, Tao
    Li, Zhen
    Zhang, Zijian
    Chen, Huaping
    Zhang, Long
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (03): : 2451 - 2477
  • [36] A Federated Learning Framework with Blockchain-Based Auditable Participant Selection
    Zeng, Huang
    Zhang, Mingtian
    Liu, Tengfei
    Yang, Anjia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 5125 - 5142
  • [37] A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus
    Li, Yuzheng
    Chen, Chuan
    Liu, Nan
    Huang, Huawei
    Zheng, Zibin
    Yan, Qiang
    IEEE NETWORK, 2021, 35 (01): : 234 - 241
  • [38] FGFL: A blockchain-based fair incentive governor for Federated Learning
    Gao, Liang
    Li, Li
    Chen, Yingwen
    Xu, ChengZhong
    Xu, Ming
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 163 : 283 - 299
  • [39] Blockchain-Based Personalized Federated Learning for Internet of Medical Things
    Lian, Zhuotao
    Wang, Weizheng
    Han, Zhaoyang
    Su, Chunhua
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 694 - 702
  • [40] Blockchain-Based Decentralized and Lightweight Anonymous Authentication for Federated Learning
    Fan, Mochan
    Zhang, Zhipeng
    Li, Zonghang
    Sun, Gang
    Yu, Hongfang
    Guizani, Mohsen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 12075 - 12086