Mask R-CNN for quality control of table olives

被引:4
|
作者
Macias-Macias, Miguel [1 ]
Sanchez-Santamaria, Hector [2 ]
Garcia Orellana, Carlos J. [1 ]
Gonzalez-Velasco, Horacio M. [1 ]
Gallardo-Caballero, Ramon [1 ]
Garcia-Manso, Antonio [1 ]
机构
[1] Univ Extremadura, Inst Comp Cient Avanzada ICCAEx, Badajoz 06006, Spain
[2] Univ Extremadura, Ctr Univ Merida CUMe, Merida 06800, Spain
关键词
Object detection; Mask-RCNN; Deep-learning; Table olives; CLASSIFICATION; FRUIT;
D O I
10.1007/s11042-023-14668-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose an object detector based on deep learning for scanning samples of table olives. For the construction of the system we have used a Mask R-CNN neural network. This network is able to segment the image providing a mask for each of the olives in the sample from which we can obtain the calibre of the object. In addition, the system is able to measure the degree of ripeness of the olives classifying them as green, semi-ripe and ripe, and identifying those fruits that are defective due to disease or damage caused by the harvesting process. The proposed system achieves success rates of 99.8% in the detection of olive fruits in photograms, 93.5% in the classification of fruit by ripeness and close to 80% in the detection of defects.
引用
收藏
页码:21657 / 21671
页数:15
相关论文
共 50 条
  • [1] Mask R-CNN for quality control of table olives
    Miguel Macías-Macías
    Héctor Sánchez-Santamaria
    Carlos J. García Orellana
    Horacio M. González-Velasco
    Ramón Gallardo-Caballero
    Antonio García-Manso
    Multimedia Tools and Applications, 2023, 82 : 21657 - 21671
  • [2] Mask R-CNN
    He, Kaiming
    Gkioxari, Georgia
    Dollar, Piotr
    Girshick, Ross
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2980 - 2988
  • [3] Mask R-CNN
    He, Kaiming
    Gkioxari, Georgia
    Dollar, Piotr
    Girshick, Ross
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 386 - 397
  • [4] Mask Scoring R-CNN
    Huang, Zhaojin
    Huang, Lichao
    Gong, Yongchao
    Huang, Chang
    Wang, Xinggang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6402 - 6411
  • [5] IEMask R-CNN: Information-Enhanced Mask R-CNN
    Bi, Xiuli
    Hu, Jinwu
    Xiao, Bin
    Li, Weisheng
    Gao, Xinbo
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (02) : 688 - 700
  • [6] Nuclei R-CNN: Improve Mask R-CNN for Nuclei Segmentation
    Lv, Guofeng
    Wen, Ke
    Wu, Zheng
    Jin, Xu
    An, Hong
    He, Jie
    2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 357 - 362
  • [7] SE-Mask R-CNN: An improved Mask R-CNN for apple detection and segmentation
    Liu, Yikun
    Yang, Gongping
    Huang, Yuwen
    Yin, Yilong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 6715 - 6725
  • [8] Mask R-CNN for Ear Detection
    Bizjak, Matic
    Peer, Peter
    Emersic, Ziga
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1624 - 1628
  • [9] Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
    Xu, Xiangyang
    Zhao, Mian
    Shi, Peixin
    Ren, Ruiqi
    He, Xuhui
    Wei, Xiaojun
    Yang, Hao
    SENSORS, 2022, 22 (03)
  • [10] Use of mask R-CNN for detection and control of slag scraper wear
    Milanez, Carlos Eduardo
    Valadao, Carlos Torturella
    de Almeida, Gustavo Maia
    Cuadros, Marco Antonio
    IRONMAKING & STEELMAKING, 2023, 50 (11) : 1698 - 1706