SE-Mask R-CNN: An improved Mask R-CNN for apple detection and segmentation

被引:10
|
作者
Liu, Yikun [1 ]
Yang, Gongping [1 ,2 ]
Huang, Yuwen [2 ]
Yin, Yilong [1 ]
机构
[1] Shandong Univ, Sch Software, Jinan, Peoples R China
[2] Heze Univ, Sch Comp, Heze, Peoples R China
关键词
Apple detection and segmentation; complex background; squeeze-and-excitation block; aspect ratio; soft-NMS; FRUIT DETECTION; ORCHARDS;
D O I
10.3233/JIFS-210597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fruit detection and segmentation is an essential operation of orchard yield estimation, the result of yield estimation directly depends on the speed and accuracy of detection and segmentation. In this work, we propose an effective method based on Mask R-CNN to detect and segment apples under complex environment of orchard. Firstly, the squeeze-and-excitation block is introduced into the ResNet-50 backbone, which can distribute the available computational resources to the most informative feature map in channel-wise. Secondly, the aspect ratio is introduced into the bounding box regression loss, which can promote the regression of bounding boxes by deforming the shape of bounding boxes to the apple boxes. Finally, we replace the NMS operation in Mask R-CNN by Soft-NMS, which can remove the redundant bounding boxes and obtain the correct detection results reasonably. The experimental result on the Minneapple dataset demonstrates that our method overperform several state-of-the-art on apple detection and segmentation.
引用
收藏
页码:6715 / 6725
页数:11
相关论文
共 50 条
  • [1] Nuclei R-CNN: Improve Mask R-CNN for Nuclei Segmentation
    Lv, Guofeng
    Wen, Ke
    Wu, Zheng
    Jin, Xu
    An, Hong
    He, Jie
    [J]. 2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 357 - 362
  • [2] Face Detection and Segmentation Based on Improved Mask R-CNN
    Lin, Kaihan
    Zhao, Huimin
    Lv, Jujian
    Li, Canyao
    Liu, Xiaoyong
    Chen, Rongjun
    Zhao, Ruoyan
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [3] Mask R-CNN
    He, Kaiming
    Gkioxari, Georgia
    Dollar, Piotr
    Girshick, Ross
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 386 - 397
  • [4] Application of Mask R-CNN Algorithm for Apple Detection and Semantic Segmentation
    Jurewicz, Maciej
    Swiderski, Bartosz
    Kurek, Jarostaw
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 286 - 289
  • [5] Mask R-CNN
    He, Kaiming
    Gkioxari, Georgia
    Dollar, Piotr
    Girshick, Ross
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2980 - 2988
  • [6] An Improved Mask R-CNN Model for Multiorgan Segmentation
    Shu, Jian-Hua
    Nian, Fu-Dong
    Yu, Ming-Hui
    Li, Xu
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [7] An Improved Mask R-CNN Method for Weed Segmentation
    Jin, Shangzhu
    Dai, Haojun
    Peng, Jun
    He, Yuanmin
    Zhu, Min
    Yu, Wencheng
    Li, Qingxia
    [J]. 2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1430 - 1435
  • [8] Potato Detection and Segmentation Based on Mask R-CNN
    Lee H.-S.
    Shin B.-S.
    [J]. Journal of Biosystems Engineering, 2020, 45 (4) : 233 - 238
  • [9] Traffic Signs Detection and Segmentation Based on the Improved Mask R-CNN
    Qian, Huimin
    Ma, Yilong
    Chen, Wei
    Li, Tao
    Zhuo, Yi
    Xiang, Wenbo
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8241 - 8246
  • [10] Mask R-CNN for Ear Detection
    Bizjak, Matic
    Peer, Peter
    Emersic, Ziga
    [J]. 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1624 - 1628