Various patterns of coexisting attractors in a hyperchaotic map

被引:29
|
作者
Gu, Haohui [1 ]
Li, Chunbiao [1 ,2 ]
Li, Yongxin [1 ,2 ]
Ge, Xizhai [1 ]
Lei, Tengfei [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[3] Qilu Inst Technol, Sch Comp & Informat Engn, Jinan 250200, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperchaotic map; Offset boosting; Coexisting attractors; CHAOTIC ATTRACTORS; MEMRISTOR; OSCILLATOR; AMPLITUDE; NETWORK;
D O I
10.1007/s11071-022-08201-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A hyperchaotic map with various patterns of coexisting attractors is found by introducing trigonometric functions. The periodicity of trigonometric functions, as a key factor of coexisting attractors, brings various possibilities for attractor self-producing. By introducing orthorhombic feedback of sinusoidal and cosine functions, the newly constructed multistability can be flexibly controlled, and consequently layered coexisting attractors, externally wrapped coexisting attractors, and scissor-type coexisting attractors are produced. As a result, the offset boosting of initial conditions may draw out chaotic signals with desired amplitudes and polarities. Furthermore, such coexisting attractors may connect and grow in the phase space. This new finding is further verified based on the platform STM32.
引用
收藏
页码:7807 / 7818
页数:12
相关论文
共 50 条
  • [41] Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization
    Prasina Alexander
    Selçuk Emiroğlu
    Sathiyadevi Kanagaraj
    Akif Akgul
    Karthikeyan Rajagopal
    The European Physical Journal B, 2023, 96
  • [42] Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator
    Zhou, Ling
    Wang, Chunhua
    Zhang, Xin
    Yao, Wei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (04):
  • [43] Infinite lattice of hyperchaotic strange attractors
    Li, Chunbiao
    Sprott, Julien Clinton
    Kapitaniak, Tomasz
    Lu, Tianai
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 76 - 82
  • [44] On the transition to hyperchaos and the structure of hyperchaotic attractors
    Harikrishnan, K. P.
    Misra, R.
    Ambika, G.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (09):
  • [45] Constructing hyperchaotic attractors of conditional symmetry
    Gu, Zhenyu
    Li, Chunbiao
    Iu, Herbert H. C.
    Min, Fuhong
    Zhao, Yibo
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (10):
  • [46] Constructing hyperchaotic attractors of conditional symmetry
    Zhenyu Gu
    Chunbiao Li
    Herbert H. C. Iu
    Fuhong Min
    Yibo Zhao
    The European Physical Journal B, 2019, 92
  • [47] On the transition to hyperchaos and the structure of hyperchaotic attractors
    K.P. Harikrishnan
    R. Misra
    G. Ambika
    The European Physical Journal B, 2013, 86
  • [48] Infinitely Many Coexisting Attractors and Scrolls in a Fractional-Order Discrete Neuron Map
    Ren, Lujie
    Qin, Lei
    Jahanshahi, Hadi
    Mou, Jun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [49] Multistability, phase diagrams and statistical properties of the kicked rotor: A map with many coexisting attractors
    Martins, Luciano Camargo
    Carlson Gallas, Jason Alfredo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1705 - 1717
  • [50] Coexisting bifurcations in a memristive hyperchaotic oscillator
    Fonzin, T. Fozin
    Srinivasan, K.
    Kengne, J.
    Pelap, F. B.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 90 : 110 - 122