Calcination temperature regulates non-radical pathways of peroxymonosulfate activation via carbon catalysts doped by iron and nitrogen

被引:71
|
作者
Wang, Yue [1 ,2 ]
Lin, Yan [1 ,2 ]
Yang, Chunping [1 ,2 ,3 ,4 ,5 ]
Wu, Shaohua [3 ,5 ,6 ]
Fu, Xintao [1 ,2 ]
Li, Xiang [4 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China
[3] Guangdong Univ Petrochem Technol, Guangdong Higher Educ Inst, Sch Environm Sci & Engn, Key Lab Petrochem Pollut Control,Guangdong Prov Ke, Maoming 525000, Guangdong, Peoples R China
[4] Nanchang Hangkong Univ, Sch Environm & Chem Engn, Nanchang 330063, Jiangxi, Peoples R China
[5] Guangdong Univ Petrochem Technol, Acad Environm & Resource Sci, Maoming Municipal Engn Res Ctr Organ Pollut Contro, Maoming 525000, Guangdong, Peoples R China
[6] Guangdong Univ Petrochem Technol, Sch Environm Sci & Engn, Maoming 525000, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Singlet oxygen; High-valent iron-oxo species; Peroxymonosulfate; Active site; Advanced oxidation; BISPHENOL-A; ORGANIC POLLUTANTS; PHENOLIC-COMPOUNDS; SINGLET OXYGEN; DEGRADATION; OXIDATION; PERSULFATE; REDUCTION; GRAPHENE;
D O I
10.1016/j.cej.2022.138468
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Switching the reaction routes between radical pathways and non-radical ones in peroxymonosulfate (PMS) activation has attracted much interest, however, the regulation between non-radical pathways remains elusive. Herein, we reported the regulation of the dominant non-radical routes in PMS activation with carbon catalysts doped by iron and nitrogen (Fe-N/C) through varying the calcination temperature of conductive polymer Fepolyaniline complexes. High calcination temperatures ranging from 300 degrees C to 900 degrees C boosted the catalytic activity and surprisingly switched the non-radical activation routes from electron transfer to singlet oxygen (1O2) and high-valent iron-oxo species (HV-Fe--O). Pyrrolic N and C--O formed at 300 degrees C accounted for the electron transfer process, while graphitic N, O-C--O, and Fe-Nx formed over 700 degrees C were key catalytic sites responsible for the production of 1O2 and HV-Fe--O. Moreover, the catalyst calcinated at 900 degrees C (900@Fe-N/C-2) maximized bisphenol A removal by 96.4% and TOC removal by 83.0%. The optimal 900@Fe-N/C-2/PMS system could work efficiently over a wide pH range or coexisting water components. This study provided a facile strategy to regulate PMS non-radical pathways for the treatment of complicated wastewater.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Electron transfer tuning for persulfate activation via the radical and non-radical pathways with biochar mediator
    Zhu, Hongqing
    Ma, Hui
    Zhao, Zhiliang
    Xu, Lanxin
    Li, Miao
    Liu, Wen
    Lai, Bo
    Vithanage, Meththika
    Pu, Shengyan
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 486
  • [42] In situ synthesis of CoFe-LDH on biochar for peroxymonosulfate activation toward sulfamethoxazole degradation: cooperation of radical and non-radical pathways
    Fu, Manjun
    Yan, Juntao
    Chai, Bo
    Fan, Guozhi
    Ding, Deng
    Song, Guangsen
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (08) : 4018 - 4032
  • [43] Coupled adsorption and non-radical dominated mechanisms in Co, N-doped graphite via peroxymonosulfate activation for efficiently degradation of carbamazepine
    Zhang, Jiali
    Wei, Jian
    Xiong, Zhaokun
    Guo, Zhuang
    Xu, Dongyao
    Lai, Bo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 309
  • [44] Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation
    Chen, Likun
    Huang, Yifei
    Zhou, Manli
    Xing, Kewen
    Lv, Weiyang
    Wang, Wentao
    Chen, Haixiang
    Yao, Yuyuan
    CHEMOSPHERE, 2020, 250
  • [45] Iron/nitrogen co-doped biochar derived from salvaged cyanobacterial for efficient peroxymonosulfate activation and ofloxacin degradation: Synergistic effect of Fe/N in non-radical path
    Yang, Yuxuan
    Chi, Yanxiao
    Yang, Kunlun
    Zhang, Zengshuai
    Gu, Peng
    Ren, Xueli
    Wang, Xiaorui
    Miao, Hengfeng
    Xu, Xinhua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 350 - 361
  • [46] Directionally inducing non-radical pathways for peroxymonosulfate activation by regulating the exposed crystal plane of MnO2
    Zhao, Huanxin
    Liu, Xinyue
    Liu, Yuqi
    Wu, Dan
    Hu, Wanjie
    Shang, Xiaoyuan
    Lv, Mingyi
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 177 : 947 - 958
  • [47] Cobalt-doped ZnAl-LDH nanosheet arrays as recyclable piezo-catalysts for effective activation of peroxymonosulfate to degrade norfloxacin: non-radical pathways and theoretical calculation studies
    Lu, Yuqing
    Ding, Chunsheng
    Guo, Jun
    Gan, Wei
    Chen, Peng
    Chen, Ruixin
    Ling, Qi
    Zhang, Miao
    Wang, Peihong
    Sun, Zhaoqi
    NANO ENERGY, 2023, 112
  • [48] Co-doped Fe3O4/α-FeOOH for highly efficient peroxymonosulfate activation to degrade trimethoprim: Occurrence of hybrid non-radical and radical pathways
    Xu, Junge
    Zhang, Ziwei
    Hong, Junxian
    Wang, Dong
    Fan, Gongduan
    Zhou, Jian
    Wang, Yingmu
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 325
  • [49] Degradation of methylene blue by an E-Fenton process coupled with peroxymonosulfate via free radical and non-radical oxidation pathways
    Wang, Song
    Zhang, Yonggang
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (07) : 3616 - 3627
  • [50] Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism
    Peng, Xiaoming
    Wu, Jianqun
    Zhao, Zilong
    Wang, Xing
    Dai, Hongling
    Wei, Yang
    Xu, Gaoping
    Hu, Fengping
    CHEMICAL ENGINEERING JOURNAL, 2022, 429