Electronic Lieb lattice signatures embedded in two-dimensional polymers with a square lattice

被引:3
|
作者
Zhang, Yingying [1 ,2 ,3 ]
Zhao, Shuangjie [1 ]
Polozij, Miroslav [1 ,2 ,3 ]
Heine, Thomas [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tech Univ Dresden, Chair Theoret Chem, Bergstr 66, D-01069 Dresden, Germany
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, Bautzner Landstr 400, D-01328 Dresden, Germany
[3] Ctr Adv Syst Understanding CASUS, Untermarkt 20, D-02826 Gorlitz, Germany
[4] Yonsei Univ, Dept Chem, Seoul 03722, South Korea
[5] Yonsei Univ, Ibs Nanomed, Seoul 120749, South Korea
关键词
FLAT-BAND; GRAPHENE; SUPERCONDUCTIVITY;
D O I
10.1039/d3sc06367d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exotic band features, such as Dirac cones and flat bands, arise directly from the lattice symmetry of materials. The Lieb lattice is one of the most intriguing topologies, because it possesses both Dirac cones and flat bands which intersect at the Fermi level. However, the synthesis of Lieb lattice materials remains a challenging task. Here, we explore two-dimensional polymers (2DPs) derived from zinc-phthalocyanine (ZnPc) building blocks with a square lattice (sql) as potential electronic Lieb lattice materials. By systematically varying the linker length (ZnPc-xP), we found that some ZnPc-xP exhibit a characteristic Lieb lattice band structure. Interestingly though, fes bands are also observed in ZnPc-xP. The coexistence of fes and Lieb in sql 2DPs challenges the conventional perception of the structure-electronic structure relationship. In addition, we show that manipulation of the Fermi level, achieved by electron removal or atom substitution, effectively preserves the unique characteristics of Lieb bands. The Lieb Dirac bands of ZnPc-4P shows a non-zero Chern number. Our discoveries provide a fresh perspective on 2DPs and redefine the search for Lieb lattice materials into a well-defined chemical synthesis task.
引用
收藏
页码:5757 / 5763
页数:7
相关论文
共 50 条
  • [21] Two-dimensional lattice polymers: Adaptive windows simulations
    Cunha-Netto, A. G.
    Dickman, Ronald
    Caparica, A. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (04) : 583 - 586
  • [22] Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling
    Whittaker, C. E.
    Cancellieri, E.
    Walker, P. M.
    Gulevich, D. R.
    Schomerus, H.
    Vaitiekus, D.
    Royall, B.
    Whittaker, D. M.
    Clarke, E.
    Iorsh, I. V.
    Shelykh, I. A.
    Skolnick, M. S.
    Krizhanovskii, D. N.
    PHYSICAL REVIEW LETTERS, 2018, 120 (09)
  • [23] Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice
    Ding, Chao
    Gao, Han
    Geng, Wenhui
    Zhao, Mingwen
    NANOSCALE ADVANCES, 2021, 3 (04): : 1127 - 1135
  • [24] Static and dynamic magnetic properties in two-dimensional Lieb-like lattice
    Wang, Xue-Jiao
    Jiang, Wei
    CHINESE JOURNAL OF PHYSICS, 2022, 80 : 349 - 366
  • [25] Tunable exciton–polariton condensation in a two-dimensional Lieb lattice at room temperature
    Fabio Scafirimuto
    Darius Urbonas
    Michael A. Becker
    Ullrich Scherf
    Rainer F. Mahrt
    Thilo Stöferle
    Communications Physics, 4
  • [26] Optically engineering the topological properties in a two-dimensional square lattice
    Wang, Yi-Xiang
    Li, Fu-Xiang
    Wu, Ya-Min
    EPL, 2012, 99 (04)
  • [27] Area Distribution of Two-Dimensional Random Walks on a Square Lattice
    Mashkevich, Stefan
    Ouvry, Stephane
    JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (01) : 71 - 78
  • [28] BOOTSTRAP PERCOLATION ON THE PRODUCT OF THE TWO-DIMENSIONAL LATTICE WITH A HAMMING SQUARE
    Gravner, Janko
    Sivakoff, David
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 145 - 174
  • [29] On codes identifying vertices in the two-dimensional square lattice with diagonals
    Cohen, GD
    Honkala, I
    Lobstein, A
    Zémor, G
    IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (02) : 174 - 176
  • [30] Folding transitions of the square-diagonal two-dimensional lattice
    Cirillo, ENM
    Gonnella, G
    Pelizzola, A
    NUCLEAR PHYSICS B, 2000, 583 (03) : 584 - 596