On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass

被引:2
|
作者
Chen, Kaiguo [1 ,2 ]
Chen, Bo [1 ,2 ]
Cui, Yinan [3 ]
Yu, Yuying [4 ]
Yu, Jidong [4 ]
Geng, Huayun [4 ]
Kang, Dongdong [1 ,2 ]
Wu, Jianhua [1 ,2 ]
Shen, Yao [5 ]
Dai, Jiayu [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Hunan Key Lab Extreme Matter & Applicat, Changsha 410073, Peoples R China
[3] Tsinghua Univ, Sch Aerosp, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[4] China Acad Engn Phys, Inst Fluid Phys, Mianyang, Peoples R China
[5] Shanghai Jiao Tong Univ, Dept Mat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ENERGY; TEMPERATURE; DYNAMICS; RAMP; COEFFICIENT; SIMULATION; DEPENDENCE; EVOLUTION; PRESSURE; ENTROPY;
D O I
10.1063/5.0176138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extreme conditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50 is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physical properties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change are successfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relatively insensitive to the strain rate gamma(.) when gamma(.) ranges from 7.5 x 10(8) to 2 x 10(9)/s, which are values reachable in QIC experiments, with a magnitude of the order of 10(-2) k(B)/atom per GPa. However, when gamma(.) is extremely high (>2x10(9)/s), a notable increase in entropy production rate with gamma(.) is observed. The Taylor-Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated that entropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase in configurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor-Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamental relation between microstructure evolution and plastic dissipation.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Recent advances in quasi-isentropic compression experiments (ICE) on the Sandia Z Accelerator
    Hall, CA
    Asay, JR
    Knudson, MD
    Hayes, DB
    Lemke, RL
    Davis, JP
    Deeney, C
    SHOCK COMPRESSION OF CONDENSED MATTER-2001, PTS 1 AND 2, PROCEEDINGS, 2002, 620 : 1163 - 1168
  • [42] Experimental technique for quasi-isentropic compression via ramp-wave generator
    Wang, Chuan-Bin
    Shen, Qiang
    Qiu, Hui-Guang
    Zhang, Lian-Meng
    Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2008, 30 (03): : 1 - 4
  • [43] Quasi-Isentropic Compression of Vapor-Deposited Hexanitroazobenzene (HNAB): Experiments and Analysis
    Yarrington, C. D.
    Tappan, A. S.
    Specht, P. E.
    Knepper, R.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [44] Quasi-Isentropic Compression of Gaseous Helium and Deuterium in Spherical Structures at Terapascal Pressures
    Zhernokletov, M. V.
    Manachkin, S. F.
    Davydov, N. B.
    Raevskii, V. A.
    Blikov, A. O.
    Panov, K. N.
    Ryzhkov, A. V.
    Arinin, V. A.
    Tkachenko, B. I.
    Logvinov, A. I.
    Degtyarev, A. V.
    Komrakov, V. A.
    Davydov, A. I.
    Anashkin, N. N.
    Khrustalev, V. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2023, 136 (02) : 227 - 240
  • [45] Quasi-Isentropic Compression of Gaseous Helium and Deuterium in Spherical Structures at Terapascal Pressures
    M. V. Zhernokletov
    S. F. Manachkin
    N. B. Davydov
    V. A. Raevskii
    A. O. Blikov
    K. N. Panov
    A. V. Ryzhkov
    V. A. Arinin
    B. I. Tkachenko
    A. I. Logvinov
    A. V. Degtyarev
    V. A. Komrakov
    A. I. Davydov
    N. N. Anashkin
    V. V. Khrustalev
    Journal of Experimental and Theoretical Physics, 2023, 136 : 227 - 240
  • [46] Quasi-isentropic compression of dense gaseous helium at pressures up to 500 GPa
    M. V. Zhernokletov
    V. K. Gryaznov
    V. A. Arinin
    V. N. Buzin
    N. B. Davydov
    R. I. Il’kaev
    I. L. Iosilevskiy
    A. L. Mikhailov
    M. G. Novikov
    V. V. Khrustalev
    V. E. Fortov
    JETP Letters, 2012, 96 : 432 - 436
  • [47] Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression
    Xie, Zhuocheng
    Jian, Wu-Rong
    Xu, Shuozhi
    Beyerlein, Irene J.
    Zhang, Xiaoqing
    Yao, Xiaohu
    Zhang, Run
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 157
  • [48] Quasi-isentropic compression technique based on generalized wave impedance gradient flyer
    Chen Z.
    Xie P.
    Liu D.
    Chen W.
    Wang Y.
    Baozha Yu Chongji/Explosion and Shock Waves, 2019, 39 (04):
  • [49] Experiments on Quasi-Isentropic Compression of Deuterium and Helium to Extreme Pressures of ≈3000 GPa
    Zhernokletov, M. V.
    Raevskii, V. A.
    Manachkin, S. F.
    Davydov, N. B.
    Panov, K. N.
    Ryzhkov, A. V.
    Arinin, V. A.
    Tkachenko, B. I.
    Logvinov, A. I.
    Komrakov, V. A.
    Davydov, A. I.
    Anashkin, N. N.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2018, 54 (05) : 522 - 526
  • [50] Quasi-isentropic compression of LiH above 400 GPa using magnetocumulative generator
    Zhang, X. P.
    Gu, Z. W.
    Xiao, Z. Q.
    Tan, F. L.
    Ye, X. Q.
    Tong, Y. J.
    Tang, X. S.
    Zhou, Z. Y.
    Cheng, C.
    Zhao, J.
    Luo, B. Q.
    Li, J. M.
    Kuang, X. W.
    Zhao, J. H.
    Sun, C. W.
    Liu, C. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (04):