Gænice: A general model for magnon band structure of artificial spin ices

被引:1
|
作者
Alatteili, Ghanem [1 ]
Martinez, Victoria [1 ]
Roxburgh, Alison [1 ]
Gartside, Jack C. [2 ]
Heinonen, Olle G. [3 ,5 ]
Gliga, Sebastian [4 ]
Iacocca, Ezio [1 ]
机构
[1] Univ Colorado Colorado Springs, Ctr Magnetism & Magnet Nanostruct, Colorado Springs, CO 80918 USA
[2] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Paul Scherrer Inst, Swiss Light Source, Villigen 5232, Switzerland
[5] Seagate Technol, 7801 Comp Ave, Bloomington, MN 55435 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Artificial spin ices; Magnon dispersion; Spin waves;
D O I
10.1016/j.jmmm.2023.171603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arrays of artificial spin ices exhibit reconfigurable ferromagnetic resonance modes that can be leveraged and designed for potential applications. However, analytical and numerical studies of the frequency response of artificial spin ices have been restricted in scope due to the need of take into account nonlocal dipole fields in theoretical calculations or by long computation times in micromagnetic simulations. Here, we introduce G AE nice, a framework to compute magnon dispersion relations of arbitrary artificial spin ice configurations. G AE nice makes use of a tight-binding approach to compute the magnon bands. It also provides the user control over the interaction terms included, e.g., external field, shape anisotropy, exchange, and dipole, making G AE nice useful for computing ferromagnetic resonances for a variety of structures, such as multilayers and ensembles of weakly or non-interacting nanoparticles. Because it relies on a semi-analytical model, G AE nice is computationally inexpensive and efficient. This makes it an attractive tool for the exploration of large parameter spaces. We expect G AE nice to help guide the development of novel artificial spin ices geometries and specific micromagnetic simulations for full quantitative verification.
引用
下载
收藏
页数:13
相关论文
共 28 条
  • [1] Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction
    Iacocca, Ezio
    Heinonen, Olle
    PHYSICAL REVIEW APPLIED, 2017, 8 (03):
  • [2] Conditions for an emergent gauge field in planar artificial spin ices with the dumbbell model approach
    Nascimento, F. S.
    de Oliveira, L. B.
    Duarte, D. G.
    de Araujo, C. I. L.
    Moura-Melo, W. A.
    Pereira, A. R.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (24)
  • [3] Spin-wave localization and guiding by magnon band structure engineering in yttrium iron garnet
    Dreyer, Rouven
    Liebing, Niklas
    Edwards, Eric R. J.
    Mueller, Andreas
    Woltersdorf, Georg
    PHYSICAL REVIEW MATERIALS, 2021, 5 (06):
  • [4] Artificial neural networks in the analysis of the fine structure of the SWCNT Raman G-band
    Kukovecz, A
    Smolik, M
    Bokova, SN
    Obraztsova, E
    Kataura, H
    Achiba, Y
    Kuzmany, H
    MOLECULAR NANOSTRUCTURES, 2003, 685 : 211 - 214
  • [5] Band structure, g-factor, and spin relaxation in n-type InAsP alloys
    Thapa, Sunil K.
    Mudiyanselage, Rathsara R. H. H.
    Paleologu, Thalya
    Choi, Sukgeun
    Yang, Zhuo
    Kohama, Y.
    Matsuda, Y. H.
    Spencer, Joseph
    Magill, Brenden A.
    Palmstrom, Chris J.
    Stanton, Christopher J.
    Khodaparast, Giti A.
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [6] Research on band gap calculation method of periodic structure based on artificial spring model
    Feng Q.
    Yang Z.
    Guo W.
    Lu J.
    Liang Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (06): : 1684 - 1697
  • [7] The deuteron spin dependent structure function g(2)(x) in a relativistic model
    TerIsaakyan, NL
    PHYSICS LETTERS B, 1996, 381 (1-3) : 331 - 336
  • [8] Effect of Crystal Field on the Electronic Structure of the Two-Band Hubbard Model with Spin Crossover
    Orlov, Yu. S.
    Nikolaev, S. V.
    Dudnikov, V. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 130 (05) : 699 - 710
  • [9] Effect of Crystal Field on the Electronic Structure of the Two-Band Hubbard Model with Spin Crossover
    Yu. S. Orlov
    S. V. Nikolaev
    V. A. Dudnikov
    Journal of Experimental and Theoretical Physics, 2020, 130 : 699 - 710
  • [10] Stability of the Spin-Charge Composite Order Phase in an Extended Kondo Lattice Model with General Band Filling
    Shiina, Ryousuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (08)