CDDNet: Camouflaged Defect Detection Network for Steel Surface

被引:15
|
作者
Luo, Qiwu [1 ]
Li, Ben [1 ]
Su, Jiaojiao [1 ]
Yang, Chunhua [1 ]
Gui, Weihua [1 ]
Silven, Olli [2 ]
Liu, Li [3 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Univ Oulu, Ctr Machine Vis & Signal Anal CMVS, Oulu 90014, Finland
[3] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Automated visual inspection (AVI); camouflaged defect; steel surface defect; texture enhancement; GESTURE RECOGNITION; CHANNEL ESTIMATION; HAND POSTURE;
D O I
10.1109/TIM.2023.3336452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate low-contrast defect detection has become a common bottleneck to further improve the performance of automated visual inspection (AVI) instruments. Inspired by visual crypsis, a novel concept of camouflaged defect has been proposed to assist surface defect detection, and then, a camouflaged defect detection network (CDDNet) was proposed. To be specific, a new inception dynamic texture enhanced module (IDTEM) was proposed to aggressively strengthen the indefinable boundaries and deceptive textures. To further explore spatial information over long distance, a lightweight recurrent decoupled fully connected attention (RDFCA) is designed with cost-effective computation. Finally, a new adaptive scale-equalizing pyramid convolution (ASEPC) was designed to achieve cross-scale feature fusion by exploiting the inter-layer feature correlation. The proposed CDDNet obtained competitive mean average precision (mAP) of 84.2%, 96.7%, and 67.1%, respectively, on three public datasets of NEU-DET, DAGM, and CAMO, when compared with state-of-the-arts.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Global Context Network for Steel Surface Defect Detection
    Yang, Zekun
    Zhu, Wei
    Ma, Feng
    Zhao, Jiang
    Jiang, Hao
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 985 - 990
  • [2] Surface Defect Detection of Steel Strip with Double Pyramid Network
    Zhou, Xinwen
    Wei, Mengen
    Li, Qianglong
    Fu, Yinghua
    Gan, Yangzhou
    Liu, Hao
    Ruan, Jing
    Liang, Jiuzhen
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [3] Cascading Convolutional Neural Network for Steel Surface Defect Detection
    Lin, Chih-Yang
    Chen, Cheng-Hsun
    Yang, Ching-Yuan
    Akhyar, Fityanul
    Hsu, Chao-Yung
    Ng, Hui-Fuang
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 202 - 212
  • [4] A lightweight convolutional neural network for surface defect detection in strip steel
    Yang, Chunlong
    Lv, Donghao
    Tian, Xu
    Wang, Chengzhi
    Yang, Peihong
    Zhang, Yong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [5] MPFANet: a multipath feature aggregation network for steel surface defect detection
    Li, Zhongyang
    Tai, Yichun
    Huang, Zhenzhen
    Peng, Tao
    Zhang, Zhijiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [6] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [7] Multi-Scale Lightweight Neural Network for Steel Surface Defect Detection
    Shao, Yichuan
    Fan, Shuo
    Sun, Haijing
    Tan, Zhenyu
    Cai, Ying
    Zhang, Can
    Zhang, Le
    COATINGS, 2023, 13 (07)
  • [8] Global attention module and cascade fusion network for steel surface defect detection
    Liu, Guanghu
    Chu, Maoxiang
    Gong, Rongfen
    Zheng, Zehao
    PATTERN RECOGNITION, 2025, 158
  • [9] Global attention module and cascade fusion network for steel surface defect detection☆ ☆
    Liu, Guanghu
    Chu, Maoxiang
    Gong, Rongfen
    Zheng, Zehao
    PATTERN RECOGNITION, 2025, 158
  • [10] A Novel ST-YOLO Network for Steel-Surface-Defect Detection
    Ma, Hongtao
    Zhang, Zhisheng
    Zhao, Junai
    SENSORS, 2023, 23 (22)